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Abstract—Radio Frequency based Wireless Power Transfer
(RF-WPT) technology is recognized as a promising way to charge
low-power wireless devices. But the application of RF-WPT in
wireless sensor networks also introduces charging interference
to wireless communications. The network lifetime maximization
by jointly considering wireless charging and data transmission
under interference concerns, however, has seldom been examined.
In this paper, we take initial steps to consider communication
and charger scheduling together in wireless sensor networks. We
propose a smart interference-aware scheduling to maximize the
network lifetime and avoid potential data loss caused by charging
interference. The evaluation result indicates that the proposed
design can guarantee 99% optimality and significantly improve
network lifetime.

I. INTRODUCTION

The development of Radio Frequency based Wireless
Power Transfer(RF-WPT) provides a convenient means to
charge low-power electronics in next generation wireless net-
works [13] [21]. Different from traditional magnetic resonant
coupling approaches [10], RF-WPT is a lightweight technique
that is suitable for low-power RFIDs and sensors [9] [13] [21].
However, it introduces higher degree of interference to wireless
communications. In particular, the study from Naderi et al. [15]
showed that RF energy transfer would cause data loss and
largely reduce the wireless throughput. A smart scheduling be-
tween RF charging and data transmission is therefore required
to bring RF-WPT deployments into reality.

In this paper, we take initial steps to investigate the poten-
tial benefit from jointly considering data communication and
charger scheduling together under interference concerns. Based
on our model analysis, we find that the lifetime maximization
problem can hardly be solved in polynomial time due to the
time-dependent constraints. To address this issue, we carefully
transform the time-dependent continuous problem into a time-
independent discrete problem. We show that the maximum
system lifetime (in the original problem) can be easily obtained
by solving the time-independent discrete problem. To further
reduce the complexity of the problem, we relax the energy
constraint of the original problem and simplify the charger’s
traveling path to a single TSP(Traveling Salesman Problem)
path. We then construct a linear programming problem and
prove that its optimal solution is equal to the relaxed problem.
Based on this analysis, we finally propose a near optimal
solution to the original problem with theoretically provable
optimality 1 − ϕ

W , where W is an arbitrary positive integer

and ϕ is determined by system properties such as the max-
imum charging duration. The contributions of this paper are
summarized as follows:

• To the best of our knowledge, this is the first work that
maximizes network lifetime in RF-WPT deployment
under practical charging interference concerns.

• Our step-by-step model analysis shows that the com-
plex joint optimization can be reasonably approximat-
ed into a simple linear programming problem.

• We develop a near optimal solution to the lifetime
maximization problem with 99% optimality in RF-
WPT deployment.

The rest of this paper is organized as follows: In section 2,
we present related works. Section 3 discusses the system mod-
el. After that, the lifetime maximization problem is formulated
in section 4. Section 5 explores a near optimal solution with
guaranteed performance bound. This solution is then evaluated
in section 6. Section 7 further discusses some practical issues
in the system deployment and section 8 concludes the paper.

II. RELATED WORK

A. RF-WPT

Since Maxwell formulated his famous equations in 1862,
which formed the theoretical basis of RF-WPT, there has been
a large body of works focus on this topic. In 1960s, Brown
first developed a rectenna to receive and rectify power carried
by high-frequency microwaves [2]. Although 40%-80% power
transmission efficiency was observed, Brown’s experiments
caused unacceptable cost since large-scale peripheral devices
were included. In the modern society, probably the most well-
known commercial application of RF-WPT is RFID, where the
RFID tags collect energy from interrogating radio waves and
communicate exclusively with the RFID reader. By harvesting
energy from ambient RF signals, Liu et al. [13] extended
the traditional RFID tag with incomplete functions to a mini-
computer with full computation, communication and control
abilities.

Compared to magnetic resonant coupling approaches pro-
posed by Kurs et al. [10], RF-WPT is recognized as the
most suitable way to charge devices with ultra-low power
requirements such as sensors and RFIDs [9] [13] [21]. This is
due to the simplicity of RF-WPT that neither large coils (with



diameter of 0.6m in [10]) nor scrupulous resonance alignment
is needed. Most importantly, RF-WPT brings about minimal
cost increase, because it can be implemented by adding several
basic electronic elements such as rectifier, capacitors and
diodes to the existing circuits [9].

B. Charging Interference

In practice, there is no exclusive spectrum allocated for
power transfer, and most RF-WPT systems operate at IS-
M(Industry, Science and Medical) band, which is already
crowded with communication systems. Another factor that
deteriorates the situation is that RF signals emitted for power
transfer always exhibit higher signal strength than low-power
data communications. Without special care, data transmissions
will be heavily interfered after a mobile charger is introduced.
For example, through experimental studies, Naderi et al. [14]
showed that RF energy transfer would cause data loss and
largely reduce the wireless throughput. The study in [15]
reported similar phenomena.

Although charging interference can be partially alleviat-
ed by allocating non-intersect spectrums for power transfer
and data communication, it causes severe spectrum efficiency
problems. Based on results in [14], as to a rechargeable
sensor network operating at 915 MHz, to ensure high quality
communication, only 54% channel can be used for throughput
if we allocate 912-918 MHz for RF-WPT. Note that 6 MHz
band is also very limited for power transfer. In this paper, we
avoid this kind of interference alleviation methods.

C. Adoption in WSNs

Recently, a flourish of research efforts have been paid to
apply WPT in WSNs [19] [22] [6] [7] [5] [4]. In [19], a mobile
wireless charging vehicle (WCV) is introduced and sensor
batteries are replenished in a periodical manner. Adopted in
small-scale networks, WCV ensured sensors stay operational
forever. Mathematical study in [22] proved that bundling the
base station on the WCV could further promote network
performances. Aiming at the maximum network utility, an
anchor-point based mobile data gathering scheme is proposed
in [6], which achieves finer scalability and can be adopted
in larger networks. Different from mobile charger approaches,
He et al. [7] considered the charger deployment problem in
static scenarios, which also ensured enough power transfer for
sensor networks. Moreover, Fu et al. [5] studied the minimum
charging delay problem while Dai et al. [4] attempted to
transfer maximum power under a predefined electromagnetic
radiation threshold.

In conclusion, existing studies mainly concentrate on
sensor-charger cooperation, how to avoid charging interference
has seldom been examined. This paper makes up the research
gap in this area.

III. MATHEMATICAL MODEL

Considering the complexity of the system model, we in-
troduce it in the following orders. In section III-A, we first
describe the basic network model without energy charging.
After a mobile charger is introduced, the charger mobility is
presented in section III-B. Then, in section III-C, we focus
on charging interference. In section III-D, we describe data
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Fig. 1. The charger’s traveling path consists of sojourn point xl and path
segment yl. Diamond and circles represent the location of the sink (x0) and
sensors (x1, x2, ...). The car represents the mobile charger.

communications under charging interference concerns. Lastly,
sensor’s energy profiles are illustrated in Section III-E.

A. Basic Network Model

We consider a set of wireless sensors N initially equipped
with rechargeable batteries and randomly deployed over a two-
dimensional area. Each sensor i ∈ N generates monitoring
data with a rate of gi, and all sensory data are forwarded to
the sink. Denote gij(t) the data rate from sensor i to j at time
t (i, j ∈ N, i ̸= j). Specifically, gi0(t) represents the data rate
from sensor i to the sink. Then, the flow conservation equation
at sensor i can be presented as [18]:

k ̸=i∑
k∈N

gki(t) + gi =

j ̸=i∑
j∈N

gij(t) + gi0(t) (1)

Denote ei(t) the energy consumption rate for sensor i at
time t, in this paper, we adopt the following energy consump-
tion model [19]:

ei(t) =

k ̸=i∑
k∈N

ρgki(t) +

j ̸=i∑
j∈N

Cijgij(t) + Ci0gi0(t) (2)

where ρ is the energy consumption rate for receiving a unit
of data rate and Cij is the energy consumption rate for
transmitting a unit of data rate from sensor i to sensor j.
Specifically, Cij = β1 + β2d

α
ij , where dij is the distance

between sensor i and j, β1 and β2 are coefficients, and α
is the path loss index.

B. Charger Mobility

Let the charger start from the sink, travel within the
network area, visit sensors and terminate at the end of the
network lifetime. When the charger visits a sensor i, it sojourns
to charge i’s battery. Then, it leaves sensor i and moves to the
next sensor. The charger’s traveling path consists of xl and yl
(l ∈ L), where L is the sensor sequence that the charger will
visit, xl is a sojourn point and yl is the path segment between
xl and xl+1 (see Fig. 1). Suppose the charger arrives at xl

at t = tl and the sojourn duration is U(xl), then we have
tl+1 − tl = U(xl) + U(yl), where U(yl) is the time spent to
traverse yl.

Practically, charging rates decrease exponentially with in-
creasing charging distances [7] [15]. For the sake of effective
charging, similar to [6] [19], we assume that a sensor can
be charged only when the charger visits it. Thus, the energy
transfer model in [7] can be simplified as Kil = ϖU(xl),
where ϖ is the energy transfer rate, Kil is the energy charged
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Fig. 2. In this example, the network topology is given in (a) and a mobile
charger sojourns at x8 to visit sensor 8 in (b). Around the charger, sensor
5, 7, 8 are interfered. Solid diamond and circles represent sink and sensors,
respectively.

for sensor i when the charger sojourns at xl. In particular,
Kil > 0 implies that the charger sojourns at xl to visit sensor
i. Otherwise, Kil = 0.

C. Charging Interference

Whenever the charger transfers energy for a sensor, da-
ta communications around it will be interfered. Denote the
interference radius as R and the distance between xl and
sensor i as dil. When the charger sojourns at xl, only if
dil ≥ R, sensor i’s data can be transmitted (or received)
without loss. Let Nl be the interfered sensor set, then we have
Nl = {i|i ∈ N, dil < R}. Take Fig. 2 as an example, the
charger is visiting sensor 8 and N8 = {5, 7, 8}.

Analyzing charger mobility shown in Fig. 1, we find
that each charging duration U(xl) is followed by a traveling
duration U(yl). During U(yl), neither power transfer nor inter-
ference exists. We can leveraging this regularity to avoid data
loss caused by charging interference. Specifically, when data
communications are interfered, sensors temporarily store all to-
be-transmitted data. Whenever the interference disappears, the
stored data can be released from local storage and transmitted
toward the sink. As shown in Fig. 2(b), sensor 5, 7 and 8 store
data when the charger is charging sensor 8. When the charger
finishes charging and moves to the next sensor, all stored data
in sensor 5, 7 and 8 can be forwarded to the sink.

D. Data Communication

For a given xl, the data routing model during [tl, tl+U(xl)]
can be extended from the basic model as follows. For sensor
i, we have:

k ̸=i∑
k∈N

gki(t) + gi =

j ̸=i∑
j∈N

gij(t) + gi0(t) + gsi (t) (3)

where gsi (t) is the data storing rate. For sensor i ̸∈ Nl,
there is no necessary to store data, thus gsi (t) = 0. As to
interfered sensor i ∈ Nl, data transmission and reception are
prohibited to avoid possible loss. Namely,

∑k ̸=i
k∈N gki(t) = 0,∑j ̸=i

j∈N gij(t) = 0 and gi0(t) = 0. Thus we have gsi (t) = gi.

During [tl, tl + U(xl)], interfered sensor i ∈ Nl stores
sensory data to its storage. And longer sojourn duration U(xl)
will lead to larger storage occupation. Since a sensor’s storage

is also scarce, a maximum sojourn time Umax is set to avoid
excessive storage occupation:

U(xl) ≤ Umax, ∀l ∈ L (4)

When the charger finishes charging at xl and moves to
the next sensor during [tl + U(xl), tl+1], none sensor will
be interfered. During this interval, for sensor i, we have the
following flow conservation equation:

k ̸=i∑
k∈N

gki(t) + gi =

j ̸=i∑
j∈N

gij(t) + gi0(t)− gri (t) (5)

where gri (t) is the data releasing rate. To avoid unacceptable
delay, data stored during [tl, tl + U(xl)] must be all released
out during [tl + U(xl), tl+1]:∫ tl+U(xl)

tl

gsi (t)dt =

∫ tl+1

tl+U(xl)

gri (t)dt (6)

A maximum data releasing rate gmax is set to keep
interfered sensors in Nl from releasing their stored data with
extremely high transmission rate simultaneously, since it might
lead to frequent medium access collisions. Namely,

0 ≤ gri (t) ≤ gmax (7)

Regulating gri (t) will largely decrease the collision possibili-
ties, though can not thoroughly avoid it. Then, the remained
collisions can be handled by collision resolution protocols [23].

E. Energy Profiles

Recent studies [19] [22] discussed the situation that the
recharged energy is infinite and the sensor network stays
operational forever. In this paper, we focus on a different
scenario where the total amount of energy assigned for the
network is limited to E [24]. Specifically, E equals to the
sum of sensors’ initial battery and recharged energy.

In practice, a typical sensor network’s life span is consisted
of deployment, initial and operational intervals. During the
deployment interval (before t = 0), sensors are fairly allocated
with the same amount of initial battery h0 and randomly
distributed to the interested area. Denote the initial interval
as [0, T0], during which initial operations such as neighbor
discovery and routing construction are performed. Meantime,
the charger visits each sensor once and charges its battery to
an appropriate level to support monitoring operations during
the next interval. Denote the charging duration for sensor i as
τi and the traveling time to visit all sensors as tTL, then, we
have:

T0 = tTL +
∑
i∈N

τi

During the initial interval, denote the energy charging rate
as ϖ0, each sensor consumes energy with a rate of e0 and
sensor i’s battery status at t = T0 is Hi. Then, we have:

Hi = ϖ0τi + h0 − e0T0, ∀i ∈ N

Denote T1 as the end time of the sensor network, which is
defined as the first time a sensor runs out of energy. During
operational interval [T0, T1], sensors monitor the interested



environment and forward sensory data to the sink. The network
lifetime T is defined as the duration of operational interval,
namely, T = T1 − T0. Because data transmissions are more
important than initial interactions, during the operational in-
terval, energy should be transferred more cautiously to avoid
large scale interference. Thus we have ϖ < ϖ0, where ϖ and
ϖ0 are energy charging rates during operational and initial
intervals, respectively.

For sensor i, denote eil the energy consumption during
[tl, tl+1]. Then, we have:

eil =

∫ tl+1

tl

ei(t)dt

Denote Bi(tl) the battery status of sensor i at time tl, to
guarantee each sensor never runs out of energy before T1, the
following energy constraint must be satisfied:

Bi(tl) = Hi −
l∑

ϵ=0

(eiϵ −Kiϵ) ≥ 0, i ∈ N, l ∈ L (8)

Since the total energy that can be assigned to the sensor
network is limited to E, we have the following constraint:

Nh0 +ϖ0

∑
i∈N

τi +ϖ
∑
l∈L

U(xl) ≤ E (9)

where Nh0, ϖ0

∑
i∈N τi and ϖ

∑
l∈L U(xl) are total energy

allocated/recharged during deployment, initial and operational
intervals, respectively.

IV. PROBLEM FORMULATION

In this section, we first formulate the lifetime maximiza-
tion problem as a time-dependent continuous problem(OR-
C). Due to its high complexity, next, we convert it to
a time-independent discrete problem(OR-D) and prove that
problem(OR-D) achieves the same maximum network lifetime
as problem(OR-C). Though problem(OR-D) is also NP-hard,
near optimal solutions can be constructed on its basis.

A. Continuous Formulation

Since the charger sojourns and travels within the network
area during the whole operational interval, network lifetime
T equals to the sum of the charger’s sojourn and traveling
durations during [T0, T1] [6]. Thus the lifetime maximization
problem can be formulated as:

max T =
∑
l∈L

[U(xl) + U(yl)] (OR-C)

s.t. Eq. (3)− (9)

In the above formulation, Eq. (3) (5) are flow conservation
constraints, Eq. (4) avoids the stored data occupy excessive
storage, Eq. (6) ensures all stored data are released from
sensors’ storage, Eq. (7) tries to mitigate medium access
collisions, Eq. (8) ensures that sensors never run out of energy
before T1, and Eq. (9) regulates that the total amount of energy
assigned to the network is finite.

Problem(OR-C) is highly complicated and can not be
solved in polynomial time due to the following reasons:

yl-1

xl-1
yl

xl

xl+1 path

(a) Case 1 & 2.

yl-1
xl-1

xl

xl+1
path

(b) Case 3.

Fig. 3. An illustrative example of different charger behaviors.

• In terms of flow routing, gij(t), gi0(t), gsi (t) and gri (t)
are all continuous functions of time t. There can be
infinite number of t, thus infinite number of possible
value of data flow functions. Hence, problem(OR-C)
is in the form of non-polynomial programming.

• The charger’s visit sequence L is unknown, which can
be determined after a traveling path of the charger is
found. However, finding the charger’s optimal trav-
eling path is NP-hard. Considering the simplest path
planning problem, TSP, is generally NP-hard.

Before a near optimal solution can be constructed, we
convert the time-dependent continuous problem(OR-C) to a
time-independent discrete problem(OR-D) borrows idea from
Shi et al. [18]. Note that in [18], the authors only considered
the static situation, where the sensor network did not operate
when the charger was traveling, which differs from our model
that the sensor network operates continuously during its whole
lifetime. Moreover, in our model, network circumstances,
sensor and charger behaviors are different from [18].

B. Discrete Formulation

Actually, different relations between U(xl) and U(νl)
reflect the charger’s different behaviors. In particular, there
exists three different charger behaviors 1.

• Case 1: U(xl) > 0 and U(yl) > 0. The charger
sojourns at xl for duration U(xl) and spends U(yl)
to traverse yl.

• Case 2: U(xl) = 0 and U(yl) > 0. The charger passes
xl without sojourn and spends U(yl) to traverse yl.

• Case 3: U(xl) = U(yl) = 0. The charger directly sets
out for location xl+1 after xl−1 is visited.

An example of different charger behaviors is shown in Fig.
3. To formulate a time-independent discrete optimization, we
define time-independent data flow functions as the average of
their time-dependent counterparts. As to case 1, for sensor i
during [tl, tl + U(xl)], we have:

Sensor i to sensor j: fij(xl) =

∫ tl+U(xl)

tl
gij(t)dt

U(xl)

Sensor i to the sink: fi0(xl) =

∫ tl+U(xl)

tl
gi0(t)dt

U(xl)

Sensor i stores data: fs
i (xl) =

∫ tl+U(xl)

tl
gsi (t)dt

U(xl)

1In section V, we will show that the case U(xl) > 0 and U(yl) ≤ 0 is
nonexistent based on theorem 2.
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Fig. 4. Replace the time-dependent continuous path segment yl with time-
independent discrete virtual point νl. Then, the charger’s traveling path is
consisted of discrete points xl and νl.

In the discrete formulation, the time-dependent continuous
path segment yl is replaced with the time-independent discrete
virtual point νl (see Fig. 4). Let U(νl) = U(yl), then, data
flow functions during [tl +U(xl), tl+1] can be transformed as
follows:

Sensor i to sensor j: fij(νl) =

∫ tl+1

tl+U(xl)
gij(t)dt

U(νl)

Sensor i to the sink: fi0(νl) =

∫ tl+1

tl+U(xl)
gi0(t)dt

U(νl)

Sensor i releases data: fr
i (νl) =

∫ tl+1

tl+U(xl)
gri (t)dt

U(νl)

With regard to case 2, we define fij(xl) = gij(tl),
fi0(xl) = gi0(tl) and fs

i (xl) = gsi (tl). Data flow functions
during [tl + U(xl), tl+1] are transformed similar to case 1.
As to case 3, we define fij(xl) = gij(tl), fi0(xl) = gi0(tl),
fs
i (xl) = gsi (tl), fij(νl) = gij(tl), fi0(νl) = gi0(tl) and
fr
i (νl) = gri (tl).

In the discrete formulation, for sensor i, when the charger
sojourns at xl and νl, flow conservation equations are:

k ̸=i∑
k∈N

fki(xl) + gi =

j ̸=i∑
j∈N

fij(xl) + fi0(xl) + fs
i (xl) (10)

and
k ̸=i∑
k∈N

fki(νl) + gi =

j ̸=i∑
j∈N

fij(νl) + fi0(νl)− fr
i (νl) (11)

For sensor i ̸∈ Nl, data communications are not interfered,
such that fs

i (xl) = 0. As to interfered sensor i ∈ Nl, data
should be stored to avoid loss, thus fs

i (xl) = gi. As we
discussed before, data stored during [tl, tl +U(xl)] should be
all released out during [tl + U(xl), tl+1] to avoid long delay:

fs
i (xl)U(xl) = fr

i (νl)U(νl) (12)

Similar to the time-dependent situation, data releasing rate
should be restricted to avoid medium access collisions, namely:

0 ≤ fr
i (νl) ≤ gmax (13)

Energy consumption rates for sensor i during [tl, tl+U(xl)]
and [tl + U(xl), tl+1] are converted as follows:

ei(xl) =

k ̸=i∑
k∈N

ρfki(xl) +

j ̸=i∑
j∈N

Cijfij(xl) + Ci0fi0(xl)

and

ei(νl) =

k ̸=i∑
k∈N

ρfki(νl) +

j ̸=i∑
j∈N

Cijfij(νl) + Ci0fi0(νl)

Energy consumed during [tl, tl+1] is eil = ei(xl)U(xl)+
ei(νl)U(νl).

Then, the time-independent discrete problem(OR-D) can be
formulated as follows:

max T =
∑
l∈L

[U(xl) + U(νl)] (OR-D)

s.t. Eq. (4), (8)− (13)

The following theorem shows that it is feasible to obtain
the maximum network lifetime of the original problem(OR-C)
by solving problem(OR-D).

Theorem 1. The optimal solution of problem(OR-D) can
achieve the same maximum network lifetime as problem(OR-
C).

We refer the readers to appendix A for a comprehensive
proof.

V. A NEAR OPTIMAL SOLUTION

This section is organized as follows: In section V-A, we
discuss the minimum energy routing. Next, we build a linear
programming with relaxed energy constraint to approximate
the original problem(OR-D). Based on this relaxed problem,
a near optimal solution is constructed in section V-C. Finally,
we give a summary of our solution in section V-D.

A. Minimum Energy Routing

In this paper, minimum energy routing is defined as the
routing scheme of a sensor network that achieves the minimum
total energy consumption.

1) Basic Network Model: To prolong the network lifetime,
naturally, data should be forwarded to the sink in an energy-
efficient way. The minimum energy routing in the basic model
(section III-A) can be calculated by the following linear
programming:

min
∑
i∈N

ei(t) (MIN-B)

s.t. Eq. (1), (2)

Problem(MIN-B) can be easily solved by optimization
tools such as CPLEX [8]. Suppose ηi is the resulted energy
consumption rate of sensor i, then the minimum total energy
consumption rate is

∑
i∈N ηi.

2) Extended Network Model: In regard to the extended
model with a mobile charger, the minimum energy routing
during [tl, tl+1] can be calculated by the following optimiza-
tion:

min
∑
i∈N

[ei(xl)U(xl) + ei(νl)U(νl)] (MIN-E)

s.t. Eq. (10)− (13), U(xl) = 1
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Fig. 5. Relations between U(xl) and U(νl).

Since the duration [tl, tl+1] is unknown yet, the charger’s
sojourn duration U(xl) is set to a unit of time, and constraints
Eq. (4) (8) (9) are temporarily neglected. Problem(MIN-E) is a
quadratic programming due to the quadratic term ei(νl)U(νl).
Before we can solve it, the following theorem is given to
convert it to a linear programming.

Theorem 2. For a given U(xl) > 0, denote glmax the maxi-
mum data generation rate for all interfered sensors. Namely,
glmax = max(gi), i ∈ Nl. To obtain the minimum energy
routing during [tl, tl+1], U(νl) = λlU(xl) must hold, where

λl =
glmax

gmax
> 0

Note that gmax is the maximum data releasing rate. We
refer the readers to appendix B for a comprehensive proof.

Based on the above theorem, problem(MIN-E) can be con-
verted to a linear programming solved by CPLEX. Suppose the
resulted energy consumptions of sensor i during [tl, tl+U(xl)]
and [tl + U(xl), tl+1] are εil and µil, respectively. Then,
the minimum total energy consumption during [tl, tl+1] is∑

i∈N [εilU(xl) + µilU(νl)].

3) Minimum Energy Routing and Charger Behaviors: As
we mentioned before, charger behaviors can be reflected by
the relation between U(xl) and U(νl), which also affects
the minimum energy routing. Take Fig. 5 as an example, if
U(xl) = 0 and U(νl) > 0, sensors only need to forward newly
generated data during [tl+U(xl), tl+1]. However, if U(xl) > 0
and U(νl) > 0, sensors are required to forward both stored and
newly generated data during [tl+U(xl), tl+1]. Since we can not
predict the values of U(xl) and U(νl), each relation should be
considered carefully. In particular, four possible relations are
listed below:

• Relation 1: U(xl) > 0 and U(νl) > λlU(xl)

• Relation 2: U(xl) > 0 and U(νl) = λlU(xl)

• Relation 3: U(xl) = 0 and U(νl) > 0

• Relation 4: U(xl) = 0 and U(νl) = 0

Based on results obtained from problem(MIN-B) and (MIN-
E), we give the following proposition to calculate sensor i’s
energy consumption during [tl, tl+1] regardless of the relation
between U(xl) and U(νl).

Proposition 1. Suppose the minimum energy routing is always
adopted during the operational interval [T0, T1], then the ener-
gy consumption of sensor i during [tl, tl+1] can be calculated
by:

eil = εilU(xl) + µilλlU(xl) + [U(νl)− λlU(xl)]ηi

We refer the readers to appendix C for a comprehensive
proof.

B. Problem Relaxation

Charger scheduling includes finding the charger’s optimal
traveling path consists of xl and νl, and deciding durations
U(xl) and U(νl). To construct a near optimal solution to the
original problem(OR-D), we temporarily neglect the maximum
sojourn time constraint Eq. (4) and relax the energy constraint
Eq. (8). Then, a relaxed problem can be built as follows:

max T =
∑
l∈L

[U(xl) + U(νl)] (RLX)

s.t. Eq. (9)− (13)

Bi(T1) = Hi −
∑
l∈L

(eil −Kil) = 0, ∀i ∈ N (14)

Note that constraint Eq. (14) in problem(RLX) is a relaxed
edition of constraint Eq. (8) in the original problem(OR-D).

To reduce the complexity of problem(RLX), we simplify
the charger’s traveling path to a single TSP path. Further, we
suppose the minimum energy routing is adopted during the
whole operational interval [T0, T1], then a linear programming
can be constructed follows:

max T =
∑
l∈L

[U(xl) + U(νl)] (LP-T)

s.t. Eq. (9), L = N

U(νl) ≥ λlU(xl), ∀l ∈ L (15)∑
l∈L

eil −ϖU(xi) = Hi, ∀i ∈ N (16)

Note that L = N stands for the fact that the charger’s traveling
path is a single TSP path. Due to the adoption of minimum
energy routing, constraint Eq. (14) is equivalently transformed
to Eq. (16). Details are omitted to conserve space.

The following theorem shows that it is sufficient to solve
problem(LP-T) for the objective of lifetime maximization in
problem(RLX).

Theorem 3. The optimal solution of problem(LP-T) is also
the optimal solution of problem(RLX).

We refer the readers to appendix D for a comprehensive
proof.

C. Satisfying All Constraints

Based on theorem 3, the optimal solution of problem(RLX)
can be obtained by solving linear programming problem(LP-
T). However, comparing to the original problem(OR-D), prob-
lem (RLX) lacks of two constraints: sojourn time constraint Eq.
(4) and energy constraint Eq. (8). In this part, we will show
the way to construct a near optimal solution of problem(OR-D)
that meets all constraints.

1) Sojourn Time Constraint Eq. (4): To construct a solution
that satisfies the sojourn time constraint, the single TSP path is
divided into W repeated TSP paths, where W is an arbitrary
positive integer. During each TSP path, sojourn time U(xl)
is reduced by 1

W . Eq. (4) can be satisfied only if W is large
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Fig. 6. Satisfying energy constraint Eq. (8) by assigning sensor i with
additional energy ϖU∗(xi).

enough. We construct the following linear programming:

max T = W
∑
l∈N

[U(xl) + U(νl)] (LP-W)

s.t. Eq. (15), L = N∑
l∈L

eil −ϖU(xi) =
Hi

W
, ∀i ∈ N (17)

Nh0 +ϖ0

∑
i∈N

τi +Wϖ
∑
l∈L

U(xl) ≤ E (18)

The following theorem shows that we can set arbitrary W ,
while the maximize lifetime T will remain uninfluenced.

Theorem 4. Suppose P ∗ is the optimal solution of problem
(LP-T) with the maximum network lifetime T ∗. Then, T ∗ can
be achieved by problem(LP-W) regardless of W .

We refer the readers to appendix E for a comprehensive
proof.

Similar to theorem 4, we can prove that if U(xl) and U(νl)

are optimal results of problem(LP-T), then, U(xl)
W and U(νl)

W are
optimal results of problem(LP-W). The network lifetime T is
irrelevant to W , however, the value of W will decide whether
the sojourn time constraint is satisfied. Suppose the optimal
sojourn time obtained by solving problem(LP-T) is U t(xl).
Then, the maximum sojourn time in problem(LP-W) must be
shorter than Umax. Namely,

max(
U t(xl)

W
) ≤ Umax

Thus we have

W ≥ max(U t(xl))

Umax
, W ∈ Z+

When the above inequality holds, the solution of problem(LP-
W) will satisfy the sojourn time constraint Eq. (4).

2) Energy Constraint Eq. (8): We focus on one of the
W repeated TSP paths. Suppose the optimal solution of
problem(LP-W) consists of e∗il, U

∗(xl) and U∗(νl), and that t∗
is the time required to finish one TSP path. Based on Eq. (17),
during one TSP path, sensor i’s energy consumption comes
from two sources: sensor i’s initial battery Hi

W and energy
replenished by the charger, i.e., ϖU∗(xi).

Before the charger visits and recharges sensor i, energy
from sensor i’s initial battery may be depleted. Namely, Hi

W ≤∑
l∈N e∗il. Thus the energy constraint Eq. (8) is violated. Take

the dash line in Fig. 6 as an example. At time tl, the charger is
sojourning at xl and the energy remained in sensor i’s battery
is Bi(tl). Before the charger arrives at sensor i at t = ti, its

battery depletes and the energy constraint is violated. To avoid
it, as the solid line shown in Fig. 6, we only need to assign
sensor i with additional energy ϖU∗(xi). Suppose each sensor
is assigned with an additional energy ζ, thus we have

ζ = max(ϖU∗(xi)), ∀i ∈ N (19)

The total amount of additional energy Nζ can not be allo-
cated directly from E since energy allocations are determined
after we solve problem(LP-W). However, we can cancel the
last ϕ ∈ Z+ TSP paths and assign the reserved energy carried
by the charger. The reserved energy should be large enough to
guarantee each sensor is assigned with energy ζ during initial
interval, thus we have:

ϕϖ
∑
i∈N

U∗(xi) ≥ Nζ(1 +
Ne0
ϖ0

)

where the left part is the reversed energy, Nζ is the total
required additional energy, and Nζ Ne0

ϖ0
is the energy consumed

to assign Nζ. Then, we can obtain:

ϕ ≥ Nζ(Ne0 +ϖ0)

ϖϖ0

∑
i∈N U∗(xi)

where ϕ is irrelevant to W .

D. Solution Summary

Now, we give a summary of our near optimal solution:

(1) Let L = N , for each sojourn location xl (l ∈ N ),
calculate N∗

l and λ∗
l .

(2) Next, solve problem(MIN-B) and (MIN-E) to obtain
minimum energy routing. For each sensor i ∈ N , calculate
η∗i , ε∗il and µ∗

il.

(3) Based on η∗i , ε∗il and µ∗
il, solve problem(LP-T). The

optimal solution consists of U t(xl), U t(νl), τ ti and T t =∑
l∈N [U t(xl)+U t(νl)]. Note that T t is an upper bound of the

proposed near optimal solution since it is the optimal solution
of the relaxed problem(RLX).

(4) Solve problem(LP-W), obtain optimal results U∗(xl)

and U∗(νl). Set W ∗ = ⌈max(Ut(xl))
Umax

⌉, ζ∗ = max(ϖU∗(xi))

and ϕ∗ = ⌈ Nζ∗(Ne0+ϖ0)
ϖϖ0

∑
i∈N U∗(xi)

⌉.

(5) Finally, the near optimal solution of the original prob-
lem(OR) are constructed as follows: (i) Let τ∗ = τ ti + ζ∗

ϖ0
,

during initial interval, the charger charges each sensor, say
i, with energy of ϖ0τ

∗
i . (ii) Adopt minimum energy rout-

ing during the whole network lifetime. Specifically, during
[tl, tl + λlU

∗(xl)] and [tl + λlU
∗(xl), tl+1], adopt minimum

energy routings obtained from problem(MIN-E) and (MIN-B),
respectively. (iii) Solve problem(LP-W) and the charger travels
W ∗ −ϕ∗ repeated TSP paths. Thus, the near optimal network
lifetime T ∗ = (W ∗ − ϕ∗)

∑
l∈N [U∗(xl) + U∗(νl)].

Since T t is an upper bound of T ∗, the optimality of our
near optimal solution is:

T ∗

T t
=

(W ∗ − ϕ∗)
∑

l∈N [U∗(xl) + U∗(νl)]∑
l∈N [U t(xl) + U t(νl)]

= 1− ϕ∗

W ∗



TABLE I
A NUMERICAL EXAMPLE: SOLUTION DETAILS

Variables Sensor Index (i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x-axis 91 171 63 14 37 131 92 118 100 177 11 32 177 34 194
y-axis 80 186 86 40 146 159 22 165 23 70 66 179 115 107 95
gi 5 2 6 3 3 6 4 3 7 8 4 4 1 8 2
λi 0.60 0.60 0.80 0.40 0.80 0.60 0.70 0.60 0.70 0.80 0.80 0.40 0.80 0.80 0.80
τi 3 3 3 2.32E4 3 3 3 3 3 3 2.04E4 3 3 7.22E3 3
Hi 951 951 951 2.41E4 951 951 951 951 951 951 2.14E4 951 951 8.17E3 951

U(xi) 44.7 0.68 23.6 0 8.86 17.1 60 19.5 31.2 40.5 0 5.87 1.17 0 0.59
U(νi) 839 0.41 18.9 0 7.09 10.2 42 11.7 21.9 32.4 0 2.34 0.93 0 0.47

0.02 0.04 0.06 0.08 0.1

2

4

6

8

10

12
x 10

6

ϖ (J/s)

T
im

e 
(s

)

 

 

Lifetime
Sojourn
Travel

(a) Network lifetime details.

0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

ϖ (J/s)

R
at

io
 (

%
)

 

 

Energy
Time
Optimality

(b) Allocation ratio during T0 and optimality.

0.02 0.04 0.06 0.08 0.1
0.5

1

1.5

2

x 10
4

ϖ (J/s)

W
 −

 φ

(c) Number of repeated TSP paths.

Fig. 7. Parameter analysis of charging rate ϖ.
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Fig. 8. Parameter analysis of interference radius R.

VI. EVALUATION

In this section, we first give a numerical example to
present some interesting results of our solution. Then, we
extensively evaluate it under different parameter settings and
reveal insights of the solution performance. Finally, we give
some comparisons to show the effectiveness of the proposed
solution.

We assume that sensors are randomly distributed over a
200m∗200m two-dimensional square area, the sink is located
at (0, 0), and sensors’ data generation rate are randomly
generated within [1, 10] kb/s. Energy consumption coefficients
β1 = 50 nJ/b, β2 = 0.0013 pJ/(b ·m4), α = 4 and ρ = 50 nJ/b.
The charger sojourns at the sink when t = 0. Energy charging
rates during initial and operational intervals are ϖ0 = 1 J/s and
ϖ = 0.05 J/s, respectively. The charging interference radius is
R = 50 m.

We assume that the total energy E is proportional to the
number of sensors, namely, E = N × 104 J. The beginning
battery is set to h0 = 1000 J and the energy consumption
rate during initial interval is e0 = 1× 10−3 J/s. Moreover, the
maximum sojourn time is Umax = 60 s, the maximum data
releasing rate is gmax = 10 kb/s, and the charger’s traveling
time during initial interval is tTL = 1000 s.

A. A Numerical Example

To give an illustrative example, we build a 15-sensor
random network with initial energy h0 = 100 J. Here, h0

is set to a small value to accommodate the small network.
Following default settings, we run the solution and obtain
optimal network lifetime T = 9.4 × 106 s. Details are listed
in Table I, where (x-axis, y-axis) represents sensor locations.
Based on step (4) of our solution, W = 7580 and ϕ = 4. Thus
the network terminates after the charger repeats W−ϕ = 7576
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Fig. 9. Parameter analysis of initial energy consumption rate e0.
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Fig. 10. Parameter analysis of the maximum data releasing rate gmax.

TSP paths. In this case, the optimality of our near optimal
solution is 1− ϕ

W = 99.95%.

B. Parameter Analysis

In this part, we increase the number of sensors to 50 and
analyze how the parameter settings influence our solution.
Two parameters are considered here: energy charging rate ϖ,
interference radius R, energy consumption rate during initial
interval e0, and the maximum data releasing rate gmax. For
each parameter, we care about the following solution details:
network lifetime T , energy allocated during initial/operational
intervals, solution optimality, and the number of repeated TSP
paths.

To analyze ϖ, we vary it from 0.01 J/s to 0.1 J/s while
keeping other parameters unchanged. From Fig. 7(a), we
find that ϖ has limited influence to T . However, it affects
the constituent parts of T : sojourn and traveling time. With
larger ϖ, the charger spends less time on energy transfer
(sojourn), but more time on traveling. Impressively, as shown
in Fig. 7(b), the near optimal solution always achieves above
99% optimality. The high optimality is obtained by jointly
optimizing data transmission and charger scheduling.

Moreover, ϖ has direct influences on energy allocation.
Since the initial battery h0 is constant, here we focus on energy
allocation ratio during initial interval, i.e.,

∑
i∈N ϖ0τi

E . In Fig.
7(b), when ϖ = 0.01 J/s, 81.2% of energy is allocated during
[0, T0] while less than 10% energy is allocated during [T0, T1].
When ϖ increases to 0.1 J/s, above 60% energy is allocated
during [T0, T1] while only 28.8% is during [0, T0]. The ratio
T0

T follows the same trend.

Another factor we care about is the number of TSP paths,
i.e., W − ϕ. As shown in Fig. 7(c), as ϖ increases, W − ϕ
increases first and after a threshold (here is ϖ = 0.02 J/s) is
surpassed, W − ϕ decreases quickly. The incremental part is
caused by the charger’s frequent movement to transfer more
energy. After ϖ ≥ 0.02, the charger has stronger charging
ability, and it could sojourn longer to achieve higher energy
transfer. Thus W − ϕ decreases.

In terms of interference radius R, the network lifetime
varies slowly (see Fig. 8(a)). Compared to ϖ, an apparent
characteristic of R is the large randomness. Although T keeps
stable, sojourn and traveling durations vary widely. With the
increase of R, generally, the sojourn time decreases while the
travel time increases. Since larger R causes more interfered
sensors, the charger tends to sojourn less when R is large.
The energy and time ratios both increase as R increases, also
with random fluctuations (see Fig. 8(b)). In Fig. 8(c), the
large randomness of W − ϕ is mainly caused by the sensor
distribution. For example, when the charger is visiting sensor
i with R = 20 m, 3 sensors around i may be interfered.
However, this number may increase to 15 when R = 40 m
due to the random distribution of sensors.

Different from ϖ and R, e0 has significant effect on the
network lifetime. As shown in Fig. 9(a), when e0 increases,
network lifetime decreases quickly. Specifically, when e0 is
very small (here is e0 < 1.2×10−3 J/s), sojourn time increases
while traveling time decreases with the increase of e0. The
reason here is apparently: larger e0 leads to more energy
consumption during initial interval. Thus T0 is kept small and
more energy is allocated during operational interval, leading
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Fig. 11. Performance comparison: network lifetime.

to larger sojourn time. After e0 > 1.2 × 10−3 J/s, as the
increase of e0, sojourn and traveling time in Fig. 9(a) decrease
while energy and time ratio in Fig. 9(b) increase, all in a
linear manner. The decreased sojourn/travel times are caused
by reduced network lifetime.

Reasons of increased energy/time ratios are more complex.
To obtain longer network lifetime, sensors should be allocated
with sufficient energy. Moreover, energy should be allocated
among sensors in a balanced way. When e0 surpassed a
threshold (here is e0 > 1.2 × 10−3 J/s), the energy balance
becomes much more important than the energy quantity. Al-
though larger e0 leads to more energy consumption during
initial interval, longer initial duration is still required to make
energy allocations balanced. As to W−ϕ in Fig. 9(c), e0 shows
insignificant importance.

At last, we analyze the maximum data releasing rate gmax.
As gmax increases, network lifetime and sojourn time increase
while travel time decreases as shown in Fig. 10(a). When
gmax ∈ [1, 6] kb/s, sojourn and travel times vary quickly while
after gmax > 6 kb/s, both vary slowly. Energy and time ratios
in Fig. 10(b) present similar regularities. The same as e0, gmax

shows trivial importance to W − ϕ.

C. Performance Comparison

In this paper, we set up two baselines to compare with
our near optimal solution. The first one is minimum energy
routing, which is pervasively adopted in practice. In this
case, total energy E is averagely allocated among sensors.
After deployment, sensors forward sensory data to the sink
with a minimum energy routing. The second algorithm is
named as perfect allocation. Suppose the minimum energy
routing is adopted by the sensor network, total energy E
is allocated based on the sensor energy consumption in a
perfect way, which means that sensor batteries will be depleted
simultaneously when the network terminates. We note that
perfect allocation is unreachable in practice since we can not
obtain sensor energy consumption information before energy
is actually consumed. Perfect allocation represents the possible
maximum network lifetime while the minimum energy routing
stands for the generally adopted solution.

We vary the number of sensors from 40 to 100 to evaluate
our solution in different network sizes. Impressively, as shown
in Fig. 11, compared to the pervasively adopted minimum
energy routing, our solution achieves 7.15 to 22.75 times
longer network lifetime with the same amount of total energy
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Fig. 12. Performance comparison: energy efficiency.

E. Moreover, the ratio between our solution and the perfect
allocation varies from 92.8% to 97%, which validates the high
effectiveness. In terms of energy efficiency, as shown in Fig.
12, less than 0.2% energy is wasted by our solution. Compare
to the perfect allocation, which utilized 100% energy, our
solution presents very high efficiency. The minimum energy
routing wastes above 86% energy. This is because the network
lifetime is determined by the sensor with the largest energy
consumption, when the network terminates, a large part of
energy is remained in batteries of light-burdened sensors.

VII. FURTHER DISCUSSION

RF-WPT is known to be a promising way to solve energy
bottlenecks for low power devices. Our study has provided
evidences that RF-WPT chargers can be utilized to promote
sensor network performances, even it introduces higher degree
of interference. Considering that deploying mobile relays [16]
[20] [17] in wireless sensor networks are mature technologies
with years of exploration, implementing the proposed solution
will not pose severer challenge. A simple and practical design
is to make the charger a coordinator that controls sensor-
charger collaboration [1] [12].

Our work remains an initial attempt toward jointly consid-
ering communication and charger scheduling in interference-
aware environments. There are still many open issues that can
be further explored, and we hereby list three in which we are
particularly interested.

Sensor-charger interaction overheads: In our investiga-
tion, communications among sensors are optimized. However,
in real environments, interactions between the charger and
sensors are inevitable and lead to communication overheads.
Efficient designs that minimize communication overheads are
to be developed.

Sensor storage and charger traveling distance: Except
for energy, storage is also very limited in sensors. To avoid
large storage usage, in our solution, the charger sojourn time
is restricted. This may cause frequent charger movements,
leading to longer traveling distance. Therefore, tradeoffs be-
tween sensor storages and charger traveling distances are worth
further exploitations.

Power transfer efficiency: In this study, we focus on allo-
cating constant total energy E among sensors. To achieve this
goal, in practice, more energy than E will be transferred by the
charger due to efficiency problems. Although there has been



researches aiming at promoting power transfer efficiency[11]
[3], more researches are still required.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the joint optimization
of maximizing network lifetime and avoiding data loss under
charging interference concerns. Considering the complexity of
the original problem, we have relaxed it and constructed a
series of simpler optimizations. Based on them, a near optimal
solution with provable 1− ϕ

W performance guarantee has been
developed. The effectiveness of our solution is validated with
extensive evaluations and comparisons. In our future work, we
will further explore the situation with very large scale networks
and multiple mobile chargers.
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APPENDIX A
PROVE OF THEOREM 1

Proof: Suppose P is the optimal solution of problem(OR-
C), which consists of the maximum network lifetime T , the
optimal charger’s traveling path, sojourn/traveling durations
U(xl) and U(yl), and data flow functions gij(t), gi0(t), gsi (t)
and gri (t). Based on solution P , we can constructed a solution
P ∗ with lifetime T ∗ as follows. First, we keep the charger’s
traveling path and sojourn/traveling durations the same as
solution P , then we can show that both solutions achieve the
same network lifetime:

T ∗ =
∑
l∈L

[U(xl) + U(νl)] =
∑
l∈L

[U(xl) + U(yl)] = T

Next, we construct data flow functions of solution P ∗ as
described in section IV-B. And we need to show that P ∗ is
a feasible solution of problem(OR-D). Specifically, we need
to prove that solution P ∗ meets constraints Eq. (4), (8)-(13).
Here, we focus on constraints Eq. (10) and (11). The proofs
are based on 3 different cases described in section IV-B.

Consider Eq. (11) in case 1, for sensor i, we have:

k ̸=i∑
k∈N

fki(νl) + gi

=

k ̸=i∑
k∈N

∫ tl+1

tl+U(xl)
gki(t)dt

U(νl)
+

∫ tl+1

tl+U(xl)
gidt

U(νl)

=

∫ tl+1

tl+U(xl)
[
∑k ̸=i

k∈N gki(t) + gi]dt

U(νl)

=

∫ tl+1

tl+U(xl)
[
∑j ̸=i

j∈N gij(t) + gi0(t) + gsi (t)]dt

U(νl)

=

j ̸=i∑
j∈N

fij(νl) + fi0(νl) + fs
i (νl)

Constraint Eq. (10) in case 1 and Eq. (11) in case 2 can be
proved in the same way. As to Eq. (10) in case 2, it can be



proved as follows:
k ̸=i∑
k∈N

fki(xl) + gi =

k ̸=i∑
k∈N

gki(tl) + gi

=

j ̸=i∑
j∈N

gij(tl) + gi0(tl) + gsi (tl)

=

j ̸=i∑
j∈N

fij(xl) + fi0(xl) + fs
i (xl)

As to case 3, both constraints Eq. (10) and (11) can be
proved the same as Eq. (10) in case 2. The proofs for Eq. (4),
(8), (9), (12) and (13) are very similar and are thus omitted to
conserve space. Up to now, we have showed that all constraints
of problem(OR-D) are met by solution P ∗. Hence P ∗ is a
feasible solution to problem(OR-D).

Finally, we need to show that P ∗ is the optimal solution of
problem(OR-D). The proof is based on contradiction. Suppose
P is the optimal solution of problem(OR-D) with the maximum
network lifetime T > T . Based on P , we can construct a
solution of problem(OR-C) with lifetime T , which contradicts
with the fact that T is the maximum network lifetime.

Since we have proved that T ∗ = T , the optimal solution
of problem(OR-D) can achieve the same maximum network
lifetime as problem(OR-C), which concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

The proof of Theorem 2 is based on the following lemmas.

Lemma 1. For a given feasible charger traveling path and a
sojourn point xl, we have U(νl) ≥ λlU(xl).

Proof: Since both glmax and gmax are positive parameters,
λl > 0 holds. If U(xl) = 0, U(νl) ≥ λlU(xl) = 0 holds
absolutely. Here, we emphasize on proving the U(xl) > 0
case. Based on Eq. (10), we have fs

i (xl) = gi. Together with
Eq. (12) and (13), we can derive:

giU(xl) = fs
i (xl)U(xl)

= fr
i (νl)U(νl) ≤ gmaxU(νl)

Hence, gmaxU(νl) ≥ giU(xl) holds for all sensor in Nl. It
absolutely holds for the sensor with maximum data generation
rate in Nl, thus gmaxU(νl) ≥ glmaxU(xl), which concludes the
proof. Note that this lemma also holds for the time-dependent
continuous formulation, we omit the proof to conserve space.

Lemma 2. Consider a data routing with full sensor participa-
tion, denote πi the minimum energy consumption rate required
to forward a unit of data from sensor i to the sink, and the
corresponding routing path is Fi. Suppose each sensor has a
unit of data generation rate, then, the combination of

∑
i∈N Fi

is the minimum energy routing with the minimum total energy
consumption rate

∑
i∈N πi.

Proof: It is apparently that
∑

i∈N Fi is a routing scheme
of the sensor network. Next, we prove

∑
i∈N Fi is the min-

imum energy routing using contradictions. Suppose M∗ is a

routing scheme that consumes less energy than
∑

i∈N πi. Thus
at least one routing path F ∗

i in M∗ consumes less energy than
πi, which contradicts with the fact that Fi is the minimum
energy routing path.

Now, we begin to prove theorem 2.

Proof: During [tl + U(xl), tl+1], the sensory data gen-
erated by sensor i is consisted of two parts: gsi (xl)U(xl)
and giU(νl). The former is generated and stored during
[tl, tl + U(xl)], and the latter is newly generated during
[tl + U(xl), tl+1]. Suppose the minimum energy routing is
adopted during [tl, tl+1], based on lemma 2, the total energy
consumption during [tl + U(xl), tl+1] is:∑

i∈N

πi[g
s
i (xl)U(xl) + giU(νl)]

=
∑
i∈N

πig
s
i (xl)U(xl) +

∑
i∈N

πigiU(νl)

=
∑
i∈Nl

πigiU(xl) +
∑
i∈N

πigiU(νl)

≥
∑
i∈Nl

πigiU(xl) +
∑
i∈N

πigiλlU(xl)

When U(νl) = λlU(xl), the total energy consumption during
[tl +U(xl), tl+1] is minimized, which concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 1

Proof: The proofs of relation 2 and 3 are apparently.
After we solve problem(MIN-E), eil = εilU(xl) + µilU(νl)
can be easily obtained. Here, we focus on relation 1. We
assume that the minimum energy routing during [tl, tl+1] is
unique (the proof of non-unique situation is similar). To prove
the proposition, we only need to prove that the total energy
consumption

∑
i∈N eil is minimal.

Based on lemma 2, we can derive
∑

i∈N ηi =
∑

i∈N πigi
and ∑

i∈N

µilλlU(xl) =
∑
i∈Nl

πigiU(xl) +
∑
i∈N

πigiλlU(xl)

Then, we have:∑
i∈N

eil

=
∑
i∈N

εilU(xl) +
∑
i∈N

µilλlU(xl) +
∑
i∈N

[U(νl)− λlU(xl)]ηi

=
∑
i∈N

εilU(xl) +
∑
i∈Nl

πigiU(xl) +
∑
i∈N

πigiλlU(xl)

+
∑
i∈N

[U(νl)− λlU(xl)]πigi

=
∑
i∈N

εilU(xl) +
∑
i∈Nl

πigiU(xl) +
∑
i∈N

πigiU(νl)

where
∑

i∈N εilU(xl) is the minimum energy consumption
during [tl, tl+U(xl)] and the last two polynomials in the right
part together represent the minimum energy routing during
[tl + U(xl), tl+1], which concludes the proof.



APPENDIX D
PROOF OF THEOREM 3

The proof is based on the following lemmas.

Lemma 3. A feasible solution of problem(LP-T) is also a
feasible solution of problem(RLX).

Proof: Suppose P is a feasible solution of problem(LP-T)
that consists of U(xl) and U(νl). Since energy consumption re-
sults ηi, εil and µil are all obtained by solving problems(MIN-
B) and (MIN-E), data routing constraints Eq. (10) - (13) are
naturally satisfied by P . Let the charger travel a single TSP
path (with each sensor visited once), constraint Eq. (16) is
equivalent to constraint Eq. (14). Therefore, constraints Eq.
(9)-(14) are all satisfied by solution P . Thus P is a feasible
solution to problem(RLX), which concludes the proof.

Lemma 4. In terms of problem(RLX), as long as the to-
tal sojourn durations

∑
l∈N U(xl) and

∑
l∈N U(νl) at each

sensor’s location remains the same, the network lifetime will
remain unchanged regardless of the charger’s traveling path.

Proof: Since the energy constraint Eq. (8) is relaxed to Eq.
(14) in problem(RLX), the above lemma can be easily proved
by analyzing sensors’ energy profiles at each location, which
only relates to the duration spent at sojourn/virtual point. We
omit the proof here to conserve space.

Lemma 5. Suppose P ∗ is an optimal solution of problem
(RLX), which consists of ε∗il, U

∗(xl), µ∗
il, U

∗(νl), η∗i , H∗
i , τ∗i ,

T ∗
0 and the maximum network lifetime T ∗ =

∑
l∈N [U∗(xl) +

U∗(νl)]. We can always construct a solution of problem(LP-T)
with the network lifetime T

′ ≥ T ∗.

Proof: Based on lemma 4, we can regulate the charger’s
traveling path to a single TSP path (L = N ), and then
problem(RLX) can be solved by CPLEX. Denote the resulted
solution as P ∗.

Next, we construct a solution P as follows: we keep
the charger traveling path, sojourn and traveling durations
unchanged while data routing is altered to the minimum energy
routing. Specifically, P consists of εil, U∗(xl), µil, U∗(νl), ηi,
Hi, τi, T0 and T (note that T = T ∗). Suppose the total energy
consumption of solution P ∗ and P during the operational
interval are ω∗ and ω, respectively. To prove lemma 5, we
need to prove: (i) ω∗ ≥ ω; (ii) T ∗

0 ≥ T0; (iii) For P ∗, Eq. (9)
reaches equality.

(i) Based on the definition of ω∗ and ω, we have:

ω∗ =
∑
i∈N

∑
l∈N

e∗il and ω =
∑
i∈N

∑
l∈N

eil

where

e∗il = (ε∗il + µ∗
ilλl)U

∗(xl) + [U∗(νl)− λlU
∗(xl)]η

∗
i

and

eil = (εil + µilλl)U
∗(xl) + [U∗(νl)− λlU

∗(xl)]ηi

Solution P adopts the minimum energy routing during
the whole network lifetime, therefore, for any l ∈ L, we

have
∑

i∈N εil ≤
∑

i∈N ε∗il,
∑

i∈N µil ≤
∑

i∈N µ∗
il and∑

i∈N ηi ≤
∑

i∈N η∗i . Thus, we have

ω∗ − ω =
∑
l∈N

{(
∑
i∈N

ε∗il −
∑
i∈N

εil)U
∗(xl)

+ (
∑
i∈N

µ∗
il −

∑
i∈N

µil)λlU
∗(xl)

+ (
∑
i∈N

η∗i −
∑
i∈N

ηi)[U
∗(νl)− λlU

∗(xl)]} ≥ 0

(ii) Based on the fact that total energy assumption equals
to total energy allocation, we have:

ω∗ +Ne0T
∗
0 = Nh0 +ϖ0

∑
i∈N

τ∗i +ϖ
∑
i∈N

U∗(xi) (20)

and

ω +Ne0T0 = Nh0 +ϖ0

∑
i∈N

τi +ϖ
∑
i∈N

U∗(xi) (21)

Let Eq. (20) minus Eq. (21), we can obtain

(ϖ0 −Ne0)(
∑
i∈N

τ∗i −
∑
i∈N

τi) = ω∗ − ω ≥ 0

The charging rate during initial time ϖ0 is larger than the
total energy consumption rate, namely, ϖ0 − Ne0 > 0. Oth-
erwise, sensor batteries may deplete before the beginning of
operational interval T0. Thus we obtain

∑
i∈N τ∗i ≥

∑
i∈N τi.

Based on T0 = tTL +
∑

i∈N τi, we can derive T ∗
0 ≥ T0.

(iii) It can be explained intuitively. Suppose the equality is
not reached, which means that a part of energy is unallocated.
Then, we can always find a method to reallocate the unallo-
cated energy and obtain a longer T , which contradicts the fact
that T ∗ is the maximum network lifetime. Thus we have:

Nh0 +ϖ0

∑
i∈N

τ∗i +ϖ
∑
l∈N

U∗(xl) = E

The above equation is based on the fact that we are in full
charge of energy allocation of the sensor network. To prove
lemma 5, we first need to prove that P is a feasible solution of
problem(LP-T). Since Hi is a intermediate parameter that can
be removed by reformulation and U∗(νl) ≥ λlU

∗(xl) holds,
we only need to prove that Eq. (9) is satisfied by P . Based on
(i) and (ii), we can derive:

Nh0 +ϖ0

∑
i∈N

τi +ϖ
∑
l∈N

U∗(xl) = ω +Ne0T0

≤ ω∗ +Ne0T
∗
0 = Nh0 +ϖ0

∑
i∈N

τ∗i +ϖ
∑
l∈N

U∗(xl) = E

Thus P is feasible to problem(LP-T). The above equation also
shows that a part of energy is unallocated in solution P . Based
on (iii), we can always construct a solution of problem(LP-T)
with longer network lifetime T

′ ≥ T = T ∗, which concludes
the proof.

Finally, we prove theorem 3.

Proof: Suppose P ∗ is an optimal solution of problem
(RLX) with the maximum network lifetime T ∗. Based on
lemma 5, we can always construct a solution of problem(LP-
T), say P , with a network lifetime T ≥ T ∗. Meantime, based



on lemma 3, solution P is also feasible to problem(RLX). And
the maximum network lifetime of problem(RLX) is T ∗. Hence,
solution P is also the optimal solution of problem(RLX) with
the network lifetime T = T ∗, which concludes the proof.

APPENDIX E
PROOF OF THEOREM 4

Proof: As to W = 1, problem(LP-W) equals to
problem(LP-T). Here, we emphasize on the W > 1 situation.
Let Uw(xl) = WU(xl) and Uw(νl) = WU(νl), then the
objective function of problem(LP-W) becomes

T =
∑
l∈N

[Uw(xl) + Uw(νl)] (22)

And constraint Eq. (17) is converted to:∑
l∈N

ewil −ϖUw(xi) = Hi (23)

where

ewil = εilU
w(xl) + µilλlU

w(xl) + (Uw(νl)− λlU
w(xl))ηi

Similarly, constraint Eq. (18) is converted to:

Nh0 +ϖ0

∑
i∈N

τi +ϖ
∑
l∈N

Uw(xl) ≤ E (24)

Then, based on the new objective function Eq. (22) and
constraints Eq. (23) (24), problem(LP-W) can be equivalently
transformed to problem(LP-T), which concludes the proof.


