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Abstract. Radio Frequency based Wireless Power Transfer (RF-WPT)
technology is recognized as a promising way to charge low-power wire-
less devices. But the application of RF-WPT in wireless sensor networks
also introduces charging interference to wireless communications. The
network performance optimization by jointly considering wireless charg-
ing and data transmission under interference concerns, however, has sel-
dom been examined. In this paper, we study the data communication
and charger scheduling together in rechargeable wireless sensor network-
s. We propose a smart interference-aware scheduling to maximize the
network profit and avoid potential data loss caused by charging inter-
ference. Then, we theoretically prove the optimality, lower and upper
bound of the proposed design. The evaluation result indicates that the
proposed design can guarantee 99% optimality and significantly improve
network lifetime.
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1 Introduction

There has been an increasing research interest over the past few years in Radio
Frequency based Wireless Power Transfer(RF-WPT) [5][9][15]. In this design, the
ambient RF radiation can be captured by the receiver antennas and converted
into electrical energy. Comparing to the traditional magnetic resonant coupling
approaches [10], RF-WPT is known as a suitable way to wirelessly charge such
ultra-low power devices as sensors and RFIDs [11][22]. However, the radiation
of RF signal also introduces severe interference to the wireless communication.
In particular, sensors will experience 100% data loss when a RF generator is
operating within 140 meters with 1Watt Energy Transmission(ET) power, which
brings significant challenges to the real-world RF-WPT deployment [14].

In this paper, we for the first time investigate this charging interference in the
joint optimization of RF-WPT charging and data routing in WSNs. Our model
carefully captures the charging as well as the routing behaviors in RF-WPT sys-
tem, aiming to provide a smart coordination between charger movement and data
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routing. Similar to the existing studies [16][17][21], we also aim to maximize the
network profit in WSNs to better balance the network lifetime and charging cost.
Unfortunately, our model analysis indicates that the joint optimization is NP-
hard due to the existence of charging path planning sub-problem. To address this
challenge, we carefully explore a set of possible approximations step by step. As
shown in Fig. 1, we start with an approximation to relax the energy constraints.
In detail, this allows sensors to be temporarily out of power and transforms the
original problem(OR) into an upper-bound problem(UP). We prove that the re-
laxation can successfully decouple the dependency between network lifetime and
the charger’s traveling path, making the upper-bound problem solvable in poly-
nomial time. Based on the investigation of the upper-bound problem, we further
construct a near-optimal problem(NR) where the out-of-power relaxation is re-
moved by assigning extra energy to sensors in the initialization stage. Moreover,
a lower-bound problem(LOW ) is also examined to bound the approximate ratio
of NR. According to the above model analyses, we finally propose a near-optimal
solution to address the joint optimization problem. The evaluation shows that
our solution achieves 90% approximate ratio in different network environments
and significantly prolongs the network lifetime. The main contributions of this
paper include:

Problem Complexity
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Fig. 1. Problems discussed in this paper.

– We pinpoint the key challenge in such joint optimization and provide well-
designed relaxations to simplify the problem. The proposed approximation-
s can also be applied to better understand other energy-related issues in
WSNs.

– We develop a near-optimal solution to the original problem; the approximate
ratio is also bounded based on the analysis of upper-bound and lower-bound
problems.

The rest of this paper is organized as follows: In Section 2, we present the
related work. Section 3 describes the big picture of our system model and de-
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fines the problem. Section 4 and 5 discuss the modeling of charging and routing
behaviors, respectively. Based on the charging and routing constraints, Section
6 considers the balancing of network lifetime as well as charging cost. The joint
optimization problem is then proposed and relaxed in section 7. Section 8 solves
the joint optimization with bounded approximate ratio. This solution is then
extensively evaluated in Section 9. Section 10 concludes the paper.

2 Related Work

WSN lifetime maximization as well as its energy efficiency have been tack-
led in the scientific literature from many aspects. One of the earlier work is
GAF(Geographical Adaptive Fidelity) [25], which divided network area into vir-
tual grids. In each grid, only one sensor is required to be active to communicate,
and others stay in sleep state to reserve energy. To better consider the data for-
warding costs, Bandyopadhyay et al. [2] proposed an energy-efficient distribut-
ed routing. This approach organizes sensors into a hierarchy of clusters, where
sensors only communicate to cluster-heads and then the cluster-heads forward
the aggregated data to the sink. Recently, mobile sink [12], relay [29] and data
collector [18] have also been extensively considered as alternative solutions to
energy-efficient data collection in WSNs.

Breakthrough inWPT technology offers a new option to dynamically recharge
energy-scarce sensors. Kurs et al. [10] experimentally showed that, by exploit-
ing magnetic resonant coupling, wireless power transfer is feasible and practical.
Realizing the enormous potential of WPT, a flourish of research efforts were
paid to apply WPT in WSNs [20][24][6][7][4][3][28]. In particular, Shi et al. [20]
investigated a mobile wireless charging vehicle(WCV), and the sensor batteries
were replenished in a periodical manner. When adopted in WSNs, this design
can make sensors stay operational forever. To understand the efficiency of WCV,
the mathematical analysis from Xie et al. [24] proved that bundling the base s-
tation on the WCV could further promote network performance. Based on this
observation, Guo et al. [6] considered an anchor-point based mobile data gath-
ering scheme and aimed to maximize total network utility. He et al. [7] and
Zhang et al. [28] indicated that the charger location as well as its deployment
will also affect the charging efficiency. Fu et al. [4] further considered the charger
location and studied the minimum charging delay problem. A recent study from
Dai et al. [3] also attempted to transfer maximum power under a predefined
electromagnetic radiation threshold.

Different from traditional WPT, the Radio frequency based technique, RF-
WPT, utilizes wireless power carried by radio frequency signals. In 2008, Sam-
ple et al. [19] designed a RF-WPT system that consists of a RF signal generator
and a WISP(Wireless Identification Sensing Platform) node. This system can
collect RF signal and rectify it to electric currents. Comparing to magnetic reso-
nant coupling, RF-WPT is recognized as the most suitable way to charge devices
with ultra-low power requirements such as sensors and RFIDs [11] [22]. This is
due to the simplicity of RF-WPT deployment. In particular, it can be imple-
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mented by adding such basic electronic elements as rectifiers, capacitors and
diodes to the existing circuits. The deployment overheads of large coils(with di-
ameter of 0.6m in magnetic resonant coupling [10]) and scrupulous resonance
alignments are therefore greatly minimized.

Although RF-WPT is a good match for sensor networks, it introduces charg-
ing interferences to the wireless data communication [13]. This is because the RF
signals exhibit higher signal strength than the low-power data communications
[11]. In general, severe data loss will be experienced whenever the power transfer
and the data communication happen simultaneously. For example, Naderi et al.
[14] has reported that sensors will experience 100% data loss when a RF gen-
erator is operating within 140 meters with 1Watt ET power. However, how to
consider such an interference is not yet examined in the existing wireless routing
frameworks.

3 System Model and Problem Definition

Let N be the finite set of wireless sensors, distributed randomly in a two-
dimensional area. Each sensor can be recharged by RF signal and has initial
battery power h0. To monitor the interested area, each sensor i ∈ N generates
sensory data with the rate of gi, and the data will be forwarded to the sink
through multi-hop wireless communications. To charge these sensors, a mobile
RF charger starts off from the sink and visits the sensors within the area. We use
L to denote the sensor sequence which the charger will visit. Since the charger
can visit a sensor for multiple times, we use l to refer a visit in L. For each visit
l ∈ L, the charger sojourns at location xl to recharge the sensor. After that, the
charger will travel to the next sojourn location xl+1.

We use yl to denote the path between two sojourn locations xl and xl+1.
Let each pair of (xl, θ) represent a charging operation during the visit l, where
the positive integer θ is an index of different charging rates. It is worth noting
that the charger can decide the energy charging rates for the sensors. Increasing
the charging rate will reduce the charging time for a sensor. Meanwhile, it will
also spread interference over a wider area. For each visit l ∈ L, the charger can
perform multiple charging operations with different energy charging rates. We
therefore use u(xl, θ) to refer the duration of charging operation (xl, θ). During
this time, a set of sensors Nθ

l will be affected by the charger’s RF charging
signal [13][14]. To avoid data loss, these sensors will temporarily store the data
in their local storage. When the charger stops charging and moves to the next
location, these sensors will be able to send out their data within such traveling
duration u(yl, θ).

Similar to the existing models [6][21], the mobile charger in our system will
keep charging the WSN unless a sensor node runs out of power. The network
lifetime T is therefore equal to the charger’s operation time. To better balance
the charging cost vc and the network lifetime T , we apply the widely adopted
utility function [16][17][21] and assume that the WSN operators can obtain profit
p for each time unit when the entire network stays operational. Different from
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the existing wireless charging models [20] [24], we do not assume that the energy
charging rate is always higher than the network’s total energy consumption rate.
Our model is focusing on a more challenging scenario where the recharged energy
is insufficient for the network to run forever. We will explore charing, routing as
well as the profit optimization issues step-by-step in the following sections. The
related notations are listed in table 1 for the sake of clarity.

4 Modeling of Charger Behaviors

In this section, we present the model of charger behaviors, including charging
rates, charging interferences and charger movements.

In practice, charging rates can be dynamically adjusted by changing the
power supply of the charger’s RF generator. With increasing power supply, both
charging rate and interference range are enlarged. Based on experimental studies
[13] [14], there is roughly a proportional relationship (denote the proportional
ratio as χ) between the charging rate and interference radius. Denote ϖmax as
the charger’s maximum charging rate and Rmax as the corresponding maximum
interference radius, then we have Rmax = χϖmax.

Next, we discuss relations between charging rates and the corresponding
interfered sensor sets. Denote the distance between sensor i and the sojourn
location xl as dil, for a given l ∈ L, arrange all dil < Rmax (i ∈ N) in ascending
order, delete repeated distances and add Rmax as the last element, and then
we obtain a distance set {D0

l , ..., D
πl

l }, where πl is the maximum number of
different interfered sensor sets. And the charger can perform a maximum of πl

charging operations at lth visit 1. In particular, we have D0
l = 0, Dπl

l = Rmax

and Dθ−1
l < Dθ

l , where the positive integer θ is an index of different interfered
sensor sets (charging rates). Then, the interference radius is divided into πl

different intervals: (D0
l , D

1
l ],..., (D

πl−1
l , Dπl

l ]. For a given index θ ∈ [1, πl], the
interfered sensor set is defined as Nθ

l = {i|i ∈ N, dil < Rθ
l }, where Rθ

l is the
interference radius corresponds to Nθ

l , and we have Rθ
l ∈ (Dθ−1

l , Dθ
l ]. Actually,

charging interference is unavoidable unless we can modify the sensor hardware
and consider orthogonal communication channels. As shown in Fig. 2, when
the charger adopts a charging rate with interference radius R2

l ∈ (D1
l , D

2
l ], the

interfered sensor set is N2
l = {i, j}.

Each pair of (xl, θ) represent a charging operation at lth visit with index
θ ∈ [1, πl]. Suppose the charger begins charging operation (xl, θ) at time tθ−1

l , it
keeps charging for a duration of u(xl, θ). After that, it keeps silent (moving) for
u(yl, θ) duration until the next charging operation. Thus we have tθl − tθ−1

l =
u(xl, θ) + u(yl, θ). As shown in Fig. 3, the charger performs charging operation
(xl, 1) during [t0l , t

0
l + u(xl, 1)]. Then, it keeps silent during [t0l + u(xl, 1), t

1
l ] and

starts charging operation (xl, 2) at t
1
l . Note that the following properties can be

easily deduced: tπl

l = t0l+1 and t0l+1 − t0l =
∑θ≤πl

θ=1 u(xl, θ) + u(yl, θ).

1 Based on lemma 1 in section 7, if two charging operations lead to the same interfered
sensor set, they can be converged to a single operation.
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Table 1. List of notations.

General notations

N The set of sensors in the network
L Charger’s visit sequence
χ Ratio between charging rate and interference radius

Rθ
l , Rmax Interference radius during u(xl, θ) / maximum

ϖθ
l ,ϖmax Charging rate during u(xl, θ), maximum charging rate
dil Distance between sensor i and sojourn location xl

πl Maximum number of charging operations at lth visit
θ Index of different charging rates(interfered sensor sets)
xl Charger’s sojourn location of lth visit
yl Path between two sojourn locations xl and xl+1

(xl, θ) Charging operation at lth visit with index θ
(yl, θ) Intermission between two successive charging operations

Dθ
l Interfered sensor set is Nθ

l when Rθ
l ∈ (Dθ−1

l , Dθ
l ]

Nθ
l Interfered sensor set during u(xl, θ)

W The charger travels W repeated paths
Φ Approximate ratio of our near-optimal solution
ϕ∗ ϕ∗ is an estimation of Φ

Profit and cost related notations

p, P Profit acquisition rate, the total network profit
V The maximum investment to the sensor network

Vd, Vn, Vo Costs during deployment, initial and operational intervals
vf Fixed cost to deploy the sensor network

vd, vc Cost to allocate/recharge a unit of energy

Time related notations

tθ−1
l Beginning instant of charging operation (xl, θ)

u(xl, θ) Duration of charging operation (xl, θ)
u(yl, θ) Duration between two successive charging operations
T0, T1 End instants of initial and operational intervals
T Network lifetime(duration of the operational interval)
tTL Time spend to visit each sensor during initial interval
τi Charging duration for sensor i during initial interval

Flow routing related notations

gi Data generation rate of sensor i
gij(xl, θ) Flow routing from sensor i to sensor j during u(xl, θ)
gij(yl, θ) Flow routing from sensor i to sensor j during u(yl, θ)
gsi (xl, θ) Data storing rate for sensor i during u(xl, θ)
gri (yl, θ) Data releasing rate for sensor i during u(yl, θ)
grmax Maximum data releasing rate

Energy related notations

h0 Initial battery of each sensor
h1 Reserved energy for possible energy deficits
e Sensor’s energy consumption rate during initial interval
Hi Battery status of sensor i at T0

eθil Energy consumption of sensor i during u(xl, θ)

Kθ
il Energy charged for sensor i during u(xl, θ)

Bi(t) Battery status of sensor i at time t
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Fig. 2. The charger visits sensor i at lth visit. Here, πl = 3 and the distance set is
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Denote the charging rate of operation (xl, θ) as ϖ
θ
l , then we have ϖθ

l = 1
χR

θ
l .

Practically, charging rates drop rapidly with increasing charging distances. As
reported in [7] [14], when the charger operates with a 3 Watts ET power, sensors
locate at 1 meter away acquire a charging rate of 4 mW. However, this value
drops to below 0.01 mW when the distance increases to 10 meters. To ensure
a high charging rate, similar to [6] [20], we assume that each sensor can be
recharged only when the charger visits it. Although the charging rate is far lower
than cable charging, WPT is particularly attractive since it does not require line-
of-sight(LOS), and is insensitive to the neighboring environment [23]. The energy
charging model in [7] can be simplified as:

Kθ
il =

1

χ
Rθ

l u(xl, θ), l ∈ L, θ ∈ [1, πl]

where Kθ
il is the energy charged for sensor i during u(xl, θ). For sensor j ̸= i,

the charged energy is Kθ
jl = 0.

5 Modeling of Routing Behaviors

In this section, we focus on designing a data routing that avoids data loss caused
by charging interferences.

Whenever the charger recharges a sensor leveraging RF-WPT technique, da-
ta communications around it will be interfered [9] [11] [13]. For a given charging
operation (xl, θ), only if i /∈ Nθ

l , sensor i’s data can be transmitted (or received)
without loss. To avoid data loss, in this paper, we adopt a store-and-release strat-
egy. Specifically, when sensor i ∈ Nθ

l suffers from interference during u(xl, θ), it
stores all to-be-transmitted data. When the charger temporarily stops charging
operation during u(yl, θ), charging interference disappears and all stored data
in sensor i can be forwarded towards the sink. Take Fig. 4 as an example, when
the charger performs charging operation (x2, 1), sensor 2 and 3 are interfered
and their sensory data are stored. All other sensors forward data to the sink
through a data routing without the participation of sensor 2 and 3. When the
charger stops charging operation and moves from x2 to x4, sensory data can be
forwarded to the sink by a routing with full sensor participation. Meanwhile,
stored data in sensor 2 and 3 can be relayed towards the sink.
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Under this strategy, the flow routing model in [20] is extended as follows.
During u(xl, θ), we have:

k ̸=i∑
k∈N

gki(xl, θ) + gi =

j ̸=i∑
j∈N

gij(xl, θ) + gi0(xl, θ) + gsi (xl, θ)

For i ∈ Nθ
l :

k ̸=i∑
k∈N

gki(xl, θ) =

j ̸=i∑
j∈N

gij(xl, θ) = gi0(xl, θ) = 0

For i /∈ Nθ
l : gsi (xl, θ) = 0 (1)

where gij(xl, θ) is the flow rate from sensor i to sensor j (subscript 0 repre-
sents the sink) and gsi (xl, θ) is the data storing rate.

When the charger temporarily stops charging operation during u(yl, θ), all
stored data should be released from sensor storages and forwarded to the sink.
Thus we have:

k ̸=i∑
k∈N

gki(yl, θ) + gi =

j ̸=i∑
j∈N

gij(yl, θ) + gi0(yl, θ)− gri (yl, θ) (2)

where gri (yl, θ) is the data releasing rate from sensor i’s storage. For sensor
i ̸∈ Nθ

l , there is no data to be released, then gri (yl, θ) = 0. As to interfered
sensor i ∈ Nθ

l , to guarantee immediate data transmission, we regulate that data
stored during u(xl, θ) must be sent out during u(yl, θ):

u(xl, θ)g
s
i (xl, θ) = u(yl, θ)g

r
i (yl, θ) (3)

However, this may cause sensors in Nθ
l release the stored data simultaneously,

leading to unacceptable medium access congestions. To mitigate it, we set a
maximum data releasing rate grmax and regulate that:

0 ≤ gri (yl, θ) ≤ grmax (4)

Although congestions can not be avoided thoroughly, decreasing data releasing
rate will largely reduce the congestion possibility. The remained congestions can
be mitigated by leveraging congestion resolution protocols. A detailed discussion
is beyond the scope of this paper and can be found in [26].
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Fig. 4. An illustrative example of the proposed store-and-release strategy. The dotted
circle gives the interference range, within it, data communication are prohibited to
avoid possible data loss. Sensors outside the circle are unaffected. In this example, we
assume that πl = 1 holds for all l ∈ L and the charger sojourns at xi to visit sensor i,
i = 1, 2, .., 7.

6 Modeling of System Profit and Cost

6.1 Deployment Interval

In typical scenarios, a sensor network’s life span consists of 3 intervals: deploy-
ment, initial and operational intervals [1][27](see Fig. 5). During the first inter-
val, sensor network is designed and sensors are deployed to the interested areas.
Denote cost during deployment interval as Vd, then we have:

Vd = vf + vdNh0

where vf is the fixed cost to buy devices and to deploy the network, and vd is the
cost of a unit of energy initially allocated to sensor batteries (in contrast with
wirelessly recharged energy). Note that the initial battery h0 is an optimization
variable. It will affect subsequent data routing and charger scheduling.

6.2 Initial Interval

During [0, T0), initial operations such as neighbor discovery and routing con-
struction are performed. Let the charger visit each sensor once and recharge
sensor batteries to an appropriate level to support monitoring operations during
the next interval. Because the sensor network does not start collecting sensory
data before T0, interferences are not such serious in this interval. The charger is
able to transfer energy at a maximum rate constantly 2, namely ϖmax. Denote
the charging duration for sensor i as τi, we have T0 = tTL +

∑
i∈N τi, where tTL

is the charger’s traveling time to visit all sensors, and the energy charged for
sensor i is ϖmaxτi. Denote the total costs in this interval as Vn, then we have
Vn = vc

∑
i∈N ϖmaxτi, where vc is the cost of a unit of recharged energy.

2 Note that near-optimal solutions can be constructed similarly if we set energy trans-
fer rates during this interval as variables.
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Since the investment (denote as V ) for the sensor network is limited, before
profits are actually obtained, costs should not surpass V , namely:

V − Vd − Vn ≥ 0 (5)

Suppose initial operations lead to an energy consumption rate of e, and denote
sensor i’s battery at time T0 as Hi, we have:

Hi = ϖmaxτi + h0 − eT0 ≥ 0, i ∈ N (6)

6.3 Operational Interval

t=0
t

t=T1

initial operational

h0

deployment

Network life span

t=T0

Hi

Fig. 5. Life span of a typical wireless sensor network.

After T0, sensors begin to monitor the interested areas and profits are ob-
tained. The duration of operational interval [T0, T1] is defined as the network
lifetime T . During [T0, T1], sensor’s energy is consumed whenever sensory da-
ta are transmitted or received. Denote ei(xl, θ) the energy consumption rate
during u(xl, θ) for sensor i ∈ N . In this paper, we adopt the following energy
consumption model [20] [23].

ei(xl, θ) =

k ̸=i∑
k∈N

ρgki(xl, θ) +

j ̸=i∑
j∈N

Cijgij(xl, θ) + Ci0gi0(xl, θ)

where ρ is the energy consumption rate for receiving a unit of data rate and Cij

is the energy consumption rate for transmitting a unit of data rate from sensor i
to sensor j. Specifically, Cij = β1 + β2d

α
ij , where β1 and β2 are coefficients, and

α is the path loss index. Similarly, for (yl, θ), we have:

ei(yl, θ) =

k ̸=i∑
k∈N

ρgki(yl, θ) +

j ̸=i∑
j∈N

Cijgij(yl, θ) + Ci0gi0(yl, θ)

For sensor i, denote eθil the energy consumption during [tθ−1
l , tθl ], then, we

have:
eθil = ei(xl, θ)u(xl, θ) + ei(yl, θ)u(yl, θ)

Denote sensor i’s battery status at time t as Bi(t), to guarantee each sensor
never run out of energy during [T0, T1], we have:

Bi(t
θ
l ) = Hi −

l∑
ϵ=0

θ≤πl∑
θ=1

(eθiϵ −Kθ
iϵ), i ∈ N, l ∈ L (7)
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As to the cost during operational interval (denote as Vo), it is determined by the
amount of recharged energy, namely:

Vo = vc
∑
l∈L

θ≤πl∑
θ=1

ϖθ
l u(xl, θ)

7 Joint Optimization of Charging and Routing

In this section, we formulate the joint optimization problem and show it is
NP-hard. Then, we formulate a problem(UP), whose optimal solution forms
an upper-bound of the original problem.

7.1 Original Problem

The network profit P is related to the network lifetime T . Since we define that the
charger operates within the network during the whole network lifetime, similar
to [6], the network lifetime T can be represented by the charger’s operational

time. Thus we have T =
∑

l∈L

∑θ≤πl

θ=1 u(xl, θ) + u(yl, θ).
The joint optimization problem is formulated as:

max P = Tp− Vd − Vn − Vo (OR)

s.t. Eq. (1)− (7)

Constraints Eq. (1) (2) are flow conservation constraints, Eq. (3) ensures that
all stored data are released and forwarded to the sink, Eq. (4) regulates the max-
imum data release rate to mitigate medium access congestions, Eq. (5) ensures
that the total cost during deployment and initial intervals will not surpass the
predefined investment, Eq. (6) and Eq. (7) ensure that sensors never run out of
energy during initial and operational intervals, respectively.

The original problem(OR) is highly complicated and can not be solved in
polynomial time. This is because the charger’s visit sequence L is determined
by the charger’s traveling path, and finding out an optimal traveling path is
generally NP-hard. Actually, the charger’s path planning sub-problem is not
modeled in the above formulation. This is based on the finding that near optimal
solutions can be constructed without solving this sub-problem (see section 8).
Hence we can omit it here to keep the problem formulation concise.

7.2 Upper-bound Problem

Constraint Eq. (7) implies dependency between network lifetime and the charg-
er’s traveling path, which is the primary cause of the high complexity of problem
(OR). To deal with it, we relax it to the following equation.

Bi(T1) = Hi −
∑
l∈L

θ≤πl∑
θ=1

(eθil −Kθ
il) ≥ 0, i ∈ N (8)
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Comparing Eq. (7) and (8), we can find that the former regulates that each
sensor never run out of energy before T1, while the latter just regulates that
a sensor’s total consumed energy is lesser than the total allocated/recharged
energy. After relaxation, sensors are allowed to be temporarily out of power
during [T0, T1]. Although the relaxation violates with the definition of network
lifetime T , we will show that the out-of-power relaxation is removed by assigning
extra energy h1 to sensors in the initialization stage. Details will be presented
in section 8.

Then, problem(OR) can be relaxed to problem(UP):

max P = Tp− Vd − Vn − Vo (UP)

s.t. Eq. (1)− (6), (8)

Since the relaxed constraint Eq. (8) is a subset of Eq. (7), the optimal solution
to problem(UP) forms an upper-bound of problem(OR).

7.3 Analysis of Upper-bound Problem

Before we can solve the original problem(OR), we focus on solving the re-
laxed problem(UP). Similar to the original problem(OR), the high complexi-
ty of problem(UP) is caused by the dependency between network lifetime and
charger’s traveling path. To decrease the complexity, we let the charger travel
a sequential path with each sensor visited once (in arbitrary sequence), namely,
L = N . Then, problem(UP) can be transformed to a quadratic programming
problem (denote as problem(UP-N ) 3), which can be solved by CPLEX [8].

Denote the optimal solution to problem(UP-N ) as SN and the corresponding
maximum profit as PN , we give the following theorem, which says that we can
obtain the optimal solution to problem(UP) by solving problem(UP-N ).

Theorem 1. SN is the optimal solution to problem(UP).

The proof of Theorem 1 is based on the following lemma.
Let xl = i represent the fact that the charger visits sensor i when it performs

charging operation (xl, θ). It is apparently that πl = πi holds if xl = i. Denote
Xθ

i as the total duration in which the charger visits sensor i with an interference
radius Rθ

l ∈ (Dθ−1
l , Dθ

l ]. Thus we have:

Xθ
i =

xl=i∑
l∈L

u(xl, θ), i ∈ N, θ ∈ [1, πi]

Similarly, we can define

Y θ
i =

xl=i∑
l∈L

u(yl, θ), i ∈ N, θ ∈ [1, πi]

3 Problem(UP-N ) is the same as problem(UP) except for the charger’s visit se-
quence is set to N . And problem(UP-N ) is quadratic due to the quadratic term
u(xl, θ)gij(xl, θ), l ∈ N .
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Lemma 1. The optimal solution to problem(UP) is determined by Xθ
i and Y θ

i ,
and it is independent of the charger’s traveling path.

Proof. For a given θ ∈ [1, πi] (i ∈ N), suppose the charger performs two different
operations (xι, θ) and (xκ, θ) to charge the same sensor i. Namely, ι ̸= κ and
xι = xκ = i. So as to (yι, θ) and (yκ, θ). To prove the above lemma, we need to
prove that (xι, θ) and (xκ, θ) can be converged to a single operation (xo, θ) and
the maximum profit will remain unchanged after the convergence.

Let the duration u(xo, θ) be the sum of u(xι, θ) and u(xκ, θ), and other
parameters of charging operation (xo, θ) as the weighted average of (xι, θ) and
(xκ, θ). For example, interference radius Rθ

o and flow routing functions gij(xo, θ)
can be constructed as follows.

Rθ
o =

Rθ
ιu(xι, θ) +Rθ

κu(xκ, θ)

u(xo, θ)
,

and

gij(xo, θ) =
u(xι, θ)gij(xι, θ) + u(xκ, θ)gij(xκ, θ)

u(xo, θ)

Next, we need to prove that all constraints of problem(UP) are still satisfied
after the convergence.

P.1. Constraints Eq. (1) - (4) are flow routing constraints. Here we only give
the proof of Eq. (1), constraints Eq. (2) - (4) can be proved in a similar way.

k ̸=i∑
k∈N

gki(xo, θ) + gi

=

k ̸=i∑
k∈N

u(xι, θ)gki(xι, θ) + u(xκ, θ)gki(xκ, θ)

u(xo, θ)
+ gi

=
u(xι, θ)(

∑k ̸=i
k∈N gki(xι, θ) + gi)

u(xo, θ)
+

u(xκ, θ)(
∑k ̸=i

k∈N gki(xκ, θ) + gi)

u(xo, θ)

=
u(xι, θ)(

∑j ̸=i
j∈N gij(xι, θ) + gi0(xι, θ) + gsi (xι, θ))

u(xo, θ)

+
u(xκ, θ)(

∑j ̸=i
j∈N gij(xκ, θ) + gi0(xκ, θ) + gsi (xκ, θ))

u(xo, θ)

=

j ̸=i∑
j∈N

gij(xo, θ) + gi0(xo, θ) + gsi (xo, θ)

P.2. Constraints Eq. (5) and (6) relate to deployment and initial intervals.
Since the convergence process only relates to operational interval, Eq. (5) and
(6) remains unaffected.

P.3. As to constraint Eq. (8), we need to prove that the recharged/consumed
energy at (xo, θ) is the sum of recharged/consumed energy at (xι, θ) and (xκ, θ).
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For the recharged energy, we have:

Kθ
io =

1

χ
Rθ

ou(xo, θ) =
1

χ
u(xo, θ)

Rθ
ιu(xι, θ) +Rθ

κu(xκ, θ)

u(xo, θ)

=
1

χ
Rθ

ιu(xι, θ) +
1

χ
Rθ

κu(xκ, θ) = Kθ
iι +Kθ

iκ

Until now, we’ve proved that recharged energy is unchanged after the conver-
gence. Similarly, we can prove that the energy consumption at (xo, θ) equals to
the sum of energy consumption at (xι, θ) and (xκ, θ). Because energy recharging
and consumption remain unchanged after convergence, energy constraint Eq. (8)
will remain satisfied.

P.4. Finally, we analyze the optimization objective P = Tp− Vd − Vn − Vo.
After convergence, costs Vd and Vn are unaffected, and the operational time
T and cost Vo remain unchanged. Hence, the maximum network profit P will
remain the same after we converge (xι, θ) and (xκ, θ) together.

Based on the above illustrations, for a given visit set L, we can converge all
charging operations with the same visited sensor i ∈ N and index θ ∈ [1, πi]
to a single operation (xi, θ). After convergence, the total duration Xθ

i and Y θ
i

remain the same, and the maximum profit P will remain unchanged. The proof
of lemma 1 is concluded.

Next, we give the proof of theorem 1.

Proof. We prove theorem 1 by using contradictions. Suppose SU is the opti-
mal solution to problem(UP) with the maximum network profit PU and PU >
PN holds. Based on lemma 1, we can equivalently transform problem(UP) to
problem(UP-N ) by converging all charging operations with the same visited sen-
sor and index to a single operation. After convergence, the network profit will
remain unchanged. Namely, we construct a solution to problem(UP-N ) with net-
work profit PU > PN , which contradicts with the fact that PN is the maximum
profit of problem(UP-N ). Thus, theorem 1 is proved.

8 Solving Original Problem

In this section, we focus on constructing a near-optimal solution to the orig-
inal problem(OR) and proving its approximate ratio. The relationship among
problems is shown in Fig. 1 and discussed in Section I.

8.1 A Near-optimal Solution

As demonstrated by lemma 1, the maximum profit achieved by problem(UP) is
independent of the charger’s traveling path. Thus we can introduce an arbitrary
positive integer W and let the charger travel W repeated paths. Within each



15

path, let each sensor be visited once (in arbitrary sequence), namely, L = N .
The newly constructed problem can be formulated as follows:

max P = WΥp− Vd − Vn −Wη (UP-W)

s.t.
Hi

W
−

∑
l∈N

θ≤πl∑
θ=1

(eθil −Kθ
il) ≥ 0, i ∈ N (9)

L = N, Eq. (1)− (6)

Where Υ is the time duration and η is the operational cost of one of the W
repeated paths. Problem(UP), (UP-N ) and (UP-W) have the same optimal so-
lution, and we can easily prove that T = WΥ and Vo = Wη.

Actually, the optimal solution to problem(UP-W) is infeasible to the original
problem(OR). This is because that the constraint Eq. (9) in problem(UP-W)
is a relaxed edition of Eq. (7). Analyzing energy details of sensor i during any
one of the W repeated paths, we find that the consumed energy comes from
two sources: energy in sensor i’s battery and energy recharged by the charger.
Namely, Hi

W and
∑

l∈N

∑θ≤πl

θ=1 Kθ
il. A solution that satisfies constraint Eq. (9)

may violate with Eq. (7). This is because the first source of energy (Hi

W ) may
be depleted before the charger visits it. Take Fig. 6(a) for example, before the
charger recharges sensor i, its energy consumption surpasses Hi

W . As a result,
sensor i is out of power since its battery status becomes negative.

To remove the out-of-power relaxation, we assign extra energy h1 to each
sensor. This part of energy is excluded from Hi and solely reserved for possi-
ble energy deficits. As long as h1 is larger than the maximum possible energy
consumption of each sensor during one path, constraint Eq. (7) will be satisfied.
An illustrative example is shown in Fig. 6(b). We can formulate the following
problem:

max P = WΥp− Vd − Vi −Wη (NR)

s.t. Vd = vdN(h0 + h1) (10)

h1 = max(
∑
l∈N

θ≤πl∑
θ=1

eθil), i ∈ N (11)

L = N, Eq. (1)− (6), (9)

Comparing problem(NR) and (OR), we know that constraints Eq. (1) - (6)
remain unchanged. As we analyzed above, Eq. (9) - (11) together ensure that
constraint Eq. (7) is satisfied. Therefore, we can obtain a near-optimal solution
to problem(OR) by solving problem(NR).

8.2 Approximate Ratio

Before theoretical proof of the proposed solution’s approximate ratio, a simple
perceptual analysis is given here. When W → +∞, the time duration Υ → 0.
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Fig. 6. After relaxation, sensors are allowed to be temporarily out of power, which
violates constraint Eq. (7). By assigning extra energy h1 for each sensor, the out-of-
power relaxation is removed. Hence, the optimal solution to problem(NR) is a feasible
solution to the original problem(OR).

Then, h1 → 0 and problem(NR) will become infinite close to problem(UP-W).
Since problem(UP-W) forms an upper-bound of the original problem, our near-
optimal solution can reach a very high approximate ratio if W → +∞.

Since the approximate ratio is hard to determine directly, we construct a vir-
tual problem(LOW ) (actually, problem(LOW ) is nonexistent, we use (LOW )
for description simplicity), whose optimal solution forms a lower-bound of prob-
lem (NR). And we let the ratio between problem(LOW ) and (UP) to represent
the desired approximate ratio. The following steps can be deemed as the solving
processes to problem(LOW ).

S.1. Denote optimal solutions to problem (UP-W) and (LOW ) as S and S∗,
respectively. For discrimination simplicity, we mark all constitutes of solution
S with bars, and those of S∗ with stars. For example, the maximum profit
achieved by solution S is P , and that achieved by S∗ is P ∗. We introduce a
variable ϕ ∈ (0, 1] and let u∗(xl, θ) = ϕu(xl, θ) and u∗(yl, θ) = ϕu(yl, θ).

S.2. We construct the following optimization problem to obtain constituents
of S∗ during deployment and initial intervals.

max ϕ (EN)

s.t. Hi = ϕHi

Eq. (5), (6), (10), (11)

Note that variables in problem(EN) are h0, h1, Vd, τi, T0, Vi, Hi and ϕ.
S.3. Except for constituents calculated from S.2, we let S∗ copy all other

constituents from solution S.
We give the following theorem, which says that S∗ is a lower-bound of

problem(NR).

Theorem 2. S∗ is a solution to problem(NR) with profit P ∗ = ϕ∗WΥp−V ∗
d −

V ∗
n − ϕ∗Wη, where ϕ∗, V ∗

d , V
∗
n are obtained by solving problem(EN).

Proof. First, we need to prove S∗ is a feasible solution to problem(NR). Since
constituents of S∗ during deployment and initial intervals are obtained by solving
problem(EN), constraint Eq. (5), (6), (10), (11) are satisfied. Constraints Eq.
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(1) - (4) are also satisfied because S∗ copies flow routings from S. Then, we
emphasize on the constraint Eq. (9). We can easily prove that e∗θil = ϕ∗eθil and

K∗θ
il = ϕ∗K

θ

il, thus we have:

H∗
i

W
−

∑
l∈N

θ≤πl∑
θ=1

(e∗θil −K∗θ
il ) =

ϕ∗Hi

W
−

∑
l∈N

θ≤πl∑
θ=1

(ϕ∗eθil − ϕ∗K
θ

il)

= ϕ∗[
Hi

W
−

∑
l∈N

θ≤πl∑
θ=1

(eθil −K
θ

il)] ≥ 0

Because all constraints of problem(NR) are satisfied by solution S∗, it is a feasible
solution to problem(NR). Thus S∗ forms a lower-bound of the optimal solution
to problem(NR). We can easily prove that Υ ∗ = ϕ∗Υ and η∗ = ϕ∗η, thus we
have P ∗ = ϕ∗ WΥp −V ∗

d −V ∗
i −ϕ∗Wη.

The approximate ratio Φ can be calculated by:

Φ =
P ∗

P
=

ϕ∗WΥp− V ∗
d − V ∗

i − ϕ∗Wη

WΥp− V d − V i −Wη
=

ϕ∗ − 1
W (Υp−η)

(V ∗
d + V ∗

i )

1− 1
W (Υp−η)

(V d + V i)
≈ ϕ∗

Because W (Υp − η) is much larger than both V ∗
d + V ∗

i and Υp − η, ϕ∗ can be
recognized as an estimation of Φ.

2

3

2

3

2

Fig. 7. The charger’s traveling path for a randomly generated 50-sensor network. The
number marked near a sensor represents that multiple charging operations are per-
formed.

9 Evaluation

In this section, we evaluate our solution under different parameter settings and
give comparisons to show its effectiveness.
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9.1 Simulation Setup

We assume that a number of sensors are randomly distributed over a 1 km× 1 km
two-dimensional square area, the sink is located at (0, 0), and each sensor’s data
generation rate is randomly generated within [1, 10] kb/s. Energy consumption
coefficients β1 = 5 nJ/b, β2 = 1.3× 10−4 pJ/(b·m4), α = 4 and ρ = 5 nJ/b [20]
[24]. The charger sojourns at the sink when t = 0. The maximum interference
radius is Rmax = 150 m and the proportional ratio between interference and
energy transfer rate is χ = 1000 (m · s)/J, leading to the maximum energy
transfer rate ϖmax = 0.15 J/s.
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Fig. 8. Profits of 100 runs.

85 90 95
0

0.2

0.4

0.6

0.8

1

Approximate ratio (%)

C
D

F

 

 

Precise      Φ
Estimation  φ*

Fig. 9. Optimality of 100 runs.

We set the total investment and fixed cost to be proportional to the total
number of sensors. Namely, V = 1000 · N and vf = 0.1 · V . The cost of a
unit of allocated energy is vd = 0.1 J−1 while the cost to charge a unit of energy
wirelessly is vc = 0.2 J−1. Whenever the interested area is monitored successfully
for a unit of time, p = 10 profit is acquired. The energy consumption rate during
initial interval is e = 1× 10−4 J/s. Moreover, the maximum data releasing rate
is grmax = 10 kb/s, and the charger’s traveling time is tTL = 1000 s.

9.2 Approximate Ratio

In this part, we focus on the approximate ratio of our solution. We run the sim-
ulation 100 times with different random seeds, network scale (20 to 100 sensors)
and sensor deployments. Results are presented in Fig. 8 and 9. Under varied net-
work environments, our solution achieves [85%, 95.6%] approximate ratio, with
an average value of 92.1%. The estimated approximate ratio ϕ∗ is very accurate
and the deviation is varied between [-3.25%, 0.11%], with an average value of
-0.26%.

9.3 Baseline Setup

Currently, there is no existing work that jointly considers charger scheduling
and data routing under the practical charging interference concern. Some similar
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Fig. 10. Network lifetime.
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Fig. 13. Required Storage.

works predefine the charger’s traveling path to TSP to decrease the complexity
of the joint optimization problems [20] [24]. To compare the performance of our
solution, we introduce a baseline setup that also regulates the charger’s path to
a TSP. In terms of energy allocation, the baseline adopts the pervasively used
method which averagely allocates as much energy as possible to each sensor
during deployment interval.

Another group of studies borrow the concept of greedy searching, where the
charger always first visits the sensor of the most urgent energy requirement
[6]. We construct our second baseline based on the greedy idea. Note that the
proposed store-and-release strategy is incorporated in both baseline designs to
avoid data loss and to ensure that the comparisons are in the fair positions.

9.4 Performance Comparisons

The system performance of various designs are comprehensively examined in
the following aspects: network lifetime, profit, approximate ratio and required
storage. Since the charging cost vc has significant impacts on system perfor-
mances, each aspect is investigated under varied values of vc. Although other
system parameters such as V , vd and grmax also exhibit impacts on the system
performance, they are omitted due to limited space.
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Network Lifetime As shown in Fig. 11, vc affects different designs in different
ways. The maximum network lifetime achieved by our solution decreases with the
increasing charging cost vc. When vc is small, our solution achieves above 300%
lifetime gains compared to TSP and greedy baselines. Even with the increasing
cost, above 67.6% lifetime gains can be easily observed. In terms of TSP baseline,
vc shows little impact. This is because the original joint optimization problem is
largely simplified after we regulate the charger’s traveling path to TSP. And data
routing becomes the most important optimization variable, which shows gentler
effect on system performances. The greedy baseline exhibits slight randomness
when vc increases. The increasing vc affects charging operation durations, thus
affects sensor’s energy consumption. Following the greedy idea, the charger’s
traveling path is uncertain, leading to randomness of the final network lifetime.

Network Profit As discussed in [16] [17] [21], the optimization objective of
maximizing network profit P achieves better balance between network lifetime
T and charging costs. As shown in Fig. 10 and 11, T and P exhibit similar
regularities, which validates that P is a good indicator of T . The larger prof-
it achieved by our solution is based on prolonged network lifetime. Compared
with TSP and greedy baselines, the profit gains achieved by our solution varies
between [99.5%, 325.4%] and [68.1%, 303.6%], respectively.

Approximate Ratio In this part, the approximate ratio is defined as the ratio
between a design and the upper-bound profit P . From Fig. 12, we can see [86%,
94%] approximate ratio of our solution, which validates its high performance.
Approximate ratios of TSP and greedy baselines vary between [20%, 47%] and
[21%, 56%], respectively.

Required Storage Since all designs adopt the proposed store-and-release s-
trategy, additional storages are required to store sensory data when a sensor is
interfered by the charger. As shown in Fig. 13, our solution requires a very small
additional storage. As vc increases, the required storage decreases from 0.38 MB
to 0.12 MB. Such a small amount of additional storage can be easily satisfied
even in resource limited sensors. Contrarily, the TSP baseline constantly requires
about 9.7 MB storage and the greedy baseline requires a larger storage varying
from 12.1 MB to 23.9 MB.

In summary, our solution achieves high approximate ratio in different network
environments. Compared to the widely used concepts such as TSP path and
greedy searching, our solution obtains up to 300% higher network lifetime.

10 Conclusion

In this paper, we have investigated the joint optimization problem under the
practical charging interference consumptions. Based on the proposed constraint
relaxation techniques, we have constructed a near-optimal solution of the joint
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optimization problem. The effectiveness of our solution is validated with exten-
sive simulations and comparisons. In our future work, we will further explore the
situation with very large scale sensor networks and multiple wireless chargers.
And we also plan to incorporate duty cycling methods with mobile chargers to
further prolong the sensor network lifetime.
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